Department of Chemistry and Biochemistry, College of Sciences, The University of Texas at Arlington, Arlington, Texas 76019, United States.
Biochemistry. 2011 Nov 29;50(47):10241-53. doi: 10.1021/bi2011724. Epub 2011 Nov 7.
Cysteine dioxygenase (CDO) is a non-heme mononuclear iron enzyme that catalyzes the O(2)-dependent oxidation of L-cysteine (Cys) to produce cysteine sulfinic acid (CSA). In this study we demonstrate that the catalytic cycle of CDO can be "primed" by one electron through chemical oxidation to produce CDO with ferric iron in the active site (Fe(III)-CDO, termed 2). While catalytically inactive, the substrate-bound form of Fe(III)-CDO (2a) is more amenable to interrogation by UV-vis and EPR spectroscopy than the 'as-isolated' Fe(II)-CDO enzyme (1). Chemical-rescue experiments were performed in which superoxide (O(2)(•-)) anions were introduced to 2a to explore the possibility that a Fe(III)-superoxide species represents the first intermediate within the catalytic pathway of CDO. In principle, O(2)(•-) can serve as a suitable acceptor for the remaining 3-electrons necessary for CSA formation and regeneration of the active Fe(II)-CDO enzyme (1). Indeed, addition of O(2)(•-) to 2a resulted in the rapid formation of a transient species (termed 3a) observable at 565 nm by UV-vis spectroscopy. The subsequent decay of 3a is kinetically matched to CSA formation. Moreover, a signal attributed to 3a was also identified using parallel mode X-band EPR spectroscopy (g ~ 11). Spectroscopic simulations, observed temperature dependence, and the microwave power saturation behavior of 3a are consistent with a ground state S = 3 from a ferromagnetically coupled (J ~ -8 cm(-1)) high-spin ferric iron (S(A) = 5/2) with a bound radical (S(B) = 1/2), presumably O(2)(•-). Following treatment with O(2)(•-), the specific activity of recovered CDO increased to ~60% relative to untreated enzyme.
半胱氨酸双加氧酶 (CDO) 是一种非血红素单核铁酶,可催化 L-半胱氨酸 (Cys) 在 O2 存在下的氧化,生成半胱氨酸亚磺酸 (CSA)。在这项研究中,我们证明 CDO 的催化循环可以通过化学氧化进行“预引发”,产生活性部位含有三价铁的 CDO (Fe(III)-CDO,称为 2)。虽然无催化活性,但与“原始”Fe(II)-CDO 酶 (1) 相比,底物结合形式的 Fe(III)-CDO (2a) 更适合通过紫外-可见和电子顺磁共振 (EPR) 光谱进行检测。进行了化学挽救实验,其中向 2a 中引入超氧阴离子 (O2(•−)),以探讨 Fe(III)-超氧物种是否代表 CDO 催化途径中的第一个中间产物。原则上,O2(•−)可以作为形成 CSA 和再生活性 Fe(II)-CDO 酶 (1) 所需的其余 3 个电子的合适受体。事实上,向 2a 中添加 O2(•−)会导致在 565nm 处可通过紫外-可见光谱检测到的瞬态物种 (称为 3a) 的快速形成。随后 3a 的衰减与 CSA 的形成动力学匹配。此外,还使用平行模式 X 波段 EPR 光谱 (g ~ 11) 鉴定了归因于 3a 的信号。3a 的光谱模拟、观察到的温度依赖性和微波功率饱和行为与源自铁磁耦合 (J ~ -8cm-1) 的高自旋三价铁 (S(A) = 5/2) 的基态 S = 3 一致,具有束缚自由基 (S(B) = 1/2),可能是 O2(•−)。用 O2(•−)处理后,回收 CDO 的比活性增加到未处理酶的约 60%。