Suppr超能文献

锥形束计算机断层扫描引导放射治疗的四维感兴趣区重建。

Four-dimensional volume-of-interest reconstruction for cone-beam computed tomography-guided radiation therapy.

机构信息

Department of Imaging Physics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Med Phys. 2011 Oct;38(10):5646-56. doi: 10.1118/1.3634058.

Abstract

PURPOSE

Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4-6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms.

METHODS

The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms.

RESULTS

Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3-8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction shows a motion blur of 13 mm. With graphics processing unit hardware used to accelerate computations, the 4D-VOI reconstruction required a 40-s reconstruction time.

CONCLUSIONS

4D-VOI reconstruction effectively reduces undersampling artifacts and resolves lung tumor motion in 4D-CBCT. The 4D-VOI reconstruction is computationally inexpensive compared with more sophisticated iterative algorithms. Compared with these algorithms, our 4D-VOI reconstruction is an attractive alternative in 4D-CBCT for reconstructing target motion without generating numerous streak artifacts.

摘要

目的

在用于图像引导放射治疗的线性加速器集成扫描仪上的四维锥形束 CT(4D-CBCT)中,数据不足是一个主要问题。扫描时间必须在 4-6 分钟范围内,以避免欠采样伪影。已经提出了各种图像重建算法来适应欠采样数据采集,但这些算法计算成本高,可能需要较长的重建时间,并且可能需要优化算法参数。作者提出了一种新的重建方法,即四维感兴趣区(4D-VOI)重建,该方法可以抑制欠采样伪影并解决肺部肿瘤运动问题,适用于欠采样 1 分钟扫描。4D-VOI 重建比其他 4D-CBCT 算法计算成本低得多。

方法

4D-VOI 方法使用与呼吸相关的投影数据重建包含移动肿瘤的感兴趣区(VOI)内的四维(4D)图像,并使用不相关的投影数据重建 VOI 外的三维(3D)图像。在 VOI 内解析解剖运动,在 VOI 外模糊。作者获取了包含移动充满水的球体的拟人化胸部体模的 1 分钟扫描。作者还使用先前获取的 2 位接受 CBCT 引导放射治疗的肺癌患者的 1 分钟扫描来测试和比较 4D-VOI 重建与标准 4D 重建和 McKinnon-Bates(MB)重建算法。

结果

与标准 4D 重建相比,4D-VOI 和 MB 重建都几乎抑制了所有条纹伪影,但 4D-VOI 的对比度噪声比标准 4D 重建高 3-8 倍。在动态胸部体模研究中,4D-VOI 和标准 4D 重建都解析了一个 18mm 位移的移动球体。4D-VOI 重建仅显示 3mm 的运动模糊,而 MB 重建显示 13mm 的运动模糊。使用图形处理单元硬件加速计算,4D-VOI 重建需要 40 秒的重建时间。

结论

4D-VOI 重建可有效减少 4D-CBCT 中的欠采样伪影并解决肺部肿瘤运动问题。与更复杂的迭代算法相比,4D-VOI 重建计算成本低。与这些算法相比,我们的 4D-VOI 重建是一种有吸引力的替代方案,可在 4D-CBCT 中重建目标运动,而不会产生大量条纹伪影。

相似文献

4
Respiratory correlated cone beam CT.呼吸相关锥形束CT
Med Phys. 2005 Apr;32(4):1176-86. doi: 10.1118/1.1869074.
6
Iterative volume of interest based 4D cone-beam CT.基于迭代感兴趣区的 4D 锥形束 CT。
Med Phys. 2017 Dec;44(12):6515-6528. doi: 10.1002/mp.12575. Epub 2017 Oct 23.

引用本文的文献

本文引用的文献

5
GPU-based cone beam computed tomography.基于 GPU 的锥形束计算机断层扫描。
Comput Methods Programs Biomed. 2010 Jun;98(3):271-7. doi: 10.1016/j.cmpb.2009.08.006. Epub 2009 Sep 25.
6
Prior Image Constrained Compressed Sensing (PICCS).先验图像约束压缩感知(PICCS)。
Proc SPIE Int Soc Opt Eng. 2008 Mar 3;6856:685618. doi: 10.1117/12.770532.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验