Suppr超能文献

基于 GPU 的锥形束计算机断层扫描。

GPU-based cone beam computed tomography.

机构信息

The State University of New York at Buffalo, USA.

出版信息

Comput Methods Programs Biomed. 2010 Jun;98(3):271-7. doi: 10.1016/j.cmpb.2009.08.006. Epub 2009 Sep 25.

Abstract

The use of cone beam computed tomography (CBCT) is growing in the clinical arena due to its ability to provide 3D information during interventions, its high diagnostic quality (sub-millimeter resolution), and its short scanning times (60 s). In many situations, the short scanning time of CBCT is followed by a time-consuming 3D reconstruction. The standard reconstruction algorithm for CBCT data is the filtered backprojection, which for a volume of size 256(3) takes up to 25 min on a standard system. Recent developments in the area of Graphic Processing Units (GPUs) make it possible to have access to high-performance computing solutions at a low cost, allowing their use in many scientific problems. We have implemented an algorithm for 3D reconstruction of CBCT data using the Compute Unified Device Architecture (CUDA) provided by NVIDIA (NVIDIA Corporation, Santa Clara, California), which was executed on a NVIDIA GeForce GTX 280. Our implementation results in improved reconstruction times from minutes, and perhaps hours, to a matter of seconds, while also giving the clinician the ability to view 3D volumetric data at higher resolutions. We evaluated our implementation on ten clinical data sets and one phantom data set to observe if differences occur between CPU and GPU-based reconstructions. By using our approach, the computation time for 256(3) is reduced from 25 min on the CPU to 3.2 s on the GPU. The GPU reconstruction time for 512(3) volumes is 8.5 s.

摘要

锥形束计算机断层扫描(CBCT)因其在介入过程中提供三维信息、高诊断质量(亚毫米分辨率)和短扫描时间(60 秒)的能力,在临床领域中的应用日益增多。在许多情况下,CBCT 的短扫描时间之后是耗时的三维重建。CBCT 数据的标准重建算法是滤波反投影,对于大小为 256(3)的体积,在标准系统上需要长达 25 分钟的时间。图形处理单元(GPU)领域的最新发展使得以低成本获得高性能计算解决方案成为可能,从而允许它们在许多科学问题中使用。我们已经使用 NVIDIA(加利福尼亚州圣克拉拉市)提供的计算统一设备架构(CUDA)实现了用于 CBCT 数据的三维重建算法,该算法在 NVIDIA GeForce GTX 280 上执行。我们的实现将重建时间从几分钟甚至几个小时缩短到几秒钟,同时还使临床医生能够以更高的分辨率查看三维体积数据。我们对十个临床数据集和一个体模数据集进行了评估,以观察 CPU 和 GPU 重建之间是否存在差异。通过使用我们的方法,256(3)的计算时间从 CPU 上的 25 分钟减少到 GPU 上的 3.2 秒。512(3)体积的 GPU 重建时间为 8.5 秒。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验