Suppr超能文献

使用原子力显微镜进行纳米力学测量中的不确定性量化。

Uncertainty quantification in nanomechanical measurements using the atomic force microscope.

机构信息

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.

出版信息

Nanotechnology. 2011 Nov 11;22(45):455703. doi: 10.1088/0957-4484/22/45/455703. Epub 2011 Oct 13.

Abstract

Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale resolution of both inorganic and biological surfaces and nanomaterials. We present a framework to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. We demonstrate the framework by quantifying uncertainty in AFM-based measurements of the transverse elastic modulus of cellulose nanocrystals (CNCs), an abundant, plant-derived nanomaterial whose mechanical properties are comparable to Kevlar fibers. For a single, isolated CNC the transverse elastic modulus was found to have a mean of 8.1 GPa and a 95% confidence interval of 2.7-20 GPa. A key result is that multiple replicates of force-distance curves do not sample the important sources of uncertainty, which are systematic in nature. The dominant source of uncertainty is the nondimensional photodiode sensitivity calibration rather than the cantilever stiffness or Z-piezo calibrations. The results underscore the great need for, and open a path towards, quantifying and minimizing uncertainty in AFM-based material property measurements of nanoparticles, nanostructured surfaces, thin films, polymers and biomaterials.

摘要

量化纳米材料测量特性的不确定性是制造可靠的纳米工程材料和产品的前提。然而,原子力显微镜(AFM)的材料特性测量很少应用严格的不确定性量化(UQ),这是一种广泛使用的仪器,可测量无机和生物表面以及纳米材料的纳米级分辨率的特性。我们提出了一个框架,通过考虑此类测量中固有的主要不确定性源,为任何用 AFM 测量的纳米颗粒或表面的局部纳米力学特性赋予不确定性。我们通过量化基于 AFM 的纤维素纳米晶体(CNC)横向弹性模量测量的不确定性来证明该框架,CNC 是一种丰富的、源自植物的纳米材料,其机械性能可与凯夫拉纤维相媲美。对于单个孤立的 CNC,横向弹性模量的平均值为 8.1 GPa,95%置信区间为 2.7-20 GPa。一个关键结果是,多次重复力-距离曲线并不能抽样到重要的不确定性源,这些源是系统性的。不确定性的主要来源是非量测光电二极管灵敏度校准,而不是悬臂梁刚度或 Z 轴压电力校准。研究结果强调了在基于 AFM 的纳米颗粒、纳米结构表面、薄膜、聚合物和生物材料的材料特性测量中量化和最小化不确定性的巨大需求,并为其开辟了一条途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验