Suppr超能文献

集体上皮细胞浸润通过狭窄的管状几何形状和 MMP14 依赖性局部软化来克服胶原细胞外基质的机械屏障。

Collective epithelial cell invasion overcomes mechanical barriers of collagenous extracellular matrix by a narrow tube-like geometry and MMP14-dependent local softening.

机构信息

Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 977R225A, Berkeley, CA 94720, USA.

出版信息

Integr Biol (Camb). 2011 Dec;3(12):1153-66. doi: 10.1039/c1ib00073j. Epub 2011 Oct 13.

Abstract

Collective cell invasion (CCI) through interstitial collagenous extracellular matrix (ECM) is crucial to the initial stages of branching morphogenesis, and a hallmark of tissue repair and dissemination of certain tumors. The collagenous ECM acts as a mechanical barrier against CCI. However, the physical nature of this barrier and how it is overcome by cells remains incompletely understood. To address these questions, we performed theoretical and experimental analysis of mammary epithelial branching morphogenesis in 3D type I collagen (collagen-I) gels. We found that the mechanical resistance of collagen-I is largely due to its elastic rather than its viscous properties. We also identified two strategies utilized by mammary epithelial cells that can independently minimize ECM mechanical resistance during CCI. First, cells adopt a narrow tube-like geometry during invasion, which minimizes the elastic opposition from the ECM as revealed by theoretical modeling of the most frequent invasive shapes and sizes. Second, the stiffness of the collagenous ECM is reduced at invasive fronts due to its degradation by matrix metalloproteinases (MMPs), as indicated by direct measurements of collagen-I microelasticity by atomic force microscopy. Molecular techniques further specified that the membrane-bound MMP14 mediates degradation of collagen-I at invasive fronts. Thus, our findings reveal that MMP14 is necessary to efficiently reduce the physical restraints imposed by collagen-I during branching morphogenesis, and help our overall understanding of how forces are balanced between cells and their surrounding ECM to maintain collective geometry and mechanical stability during CCI.

摘要

细胞集体侵袭(CCI)穿过细胞间质胶原细胞外基质(ECM)对于分支形态发生的初始阶段至关重要,也是组织修复和某些肿瘤扩散的标志。胶原 ECM 作为 CCI 的机械屏障。然而,这种屏障的物理性质以及细胞如何克服它仍然不完全清楚。为了解决这些问题,我们对 3D 型 I 胶原(胶原-I)凝胶中的乳腺上皮分支形态发生进行了理论和实验分析。我们发现,胶原-I 的机械阻力主要归因于其弹性而非粘性特性。我们还确定了乳腺上皮细胞在 CCI 期间独立最小化 ECM 机械阻力所采用的两种策略。首先,细胞在侵袭过程中采用狭窄的管状几何形状,这最大限度地减少了 ECM 的弹性阻力,这是通过对最常见的侵袭形状和大小的理论建模揭示的。其次,由于基质金属蛋白酶(MMPs)的降解,胶原 ECM 的刚度在侵袭前沿降低,这通过原子力显微镜直接测量胶原-I 的微弹性得到证实。分子技术进一步表明,膜结合的 MMP14 介导了侵袭前沿的胶原-I 降解。因此,我们的研究结果表明,MMP14 对于在分支形态发生过程中有效地降低胶原-I 施加的物理限制是必要的,并有助于我们全面了解细胞及其周围 ECM 之间的力如何平衡,以在 CCI 期间维持集体几何形状和机械稳定性。

相似文献

3
Divergent Matrix-Remodeling Strategies Distinguish Developmental from Neoplastic Mammary Epithelial Cell Invasion Programs.
Dev Cell. 2018 Oct 22;47(2):145-160.e6. doi: 10.1016/j.devcel.2018.08.025. Epub 2018 Sep 27.
4
Three-dimensional modeling of mechanical forces in the extracellular matrix during epithelial lumen formation.
Biophys J. 2006 Jun 15;90(12):4380-91. doi: 10.1529/biophysj.105.073494. Epub 2006 Mar 24.
5
Imaging and modeling of acute pressure-induced changes of collagen and elastin microarchitectures in pig and human resistance arteries.
Am J Physiol Heart Circ Physiol. 2017 Jul 1;313(1):H164-H178. doi: 10.1152/ajpheart.00110.2017. Epub 2017 Apr 21.
6
Mammary Branching Morphogenesis Requires Reciprocal Signaling by Heparanase and MMP-14.
J Cell Biochem. 2015 Aug;116(8):1668-79. doi: 10.1002/jcb.25127.
7
Multiscale mechanical simulations of cell compacted collagen gels.
J Biomech Eng. 2013 Jul 1;135(7):71004. doi: 10.1115/1.4024460.
9
The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization.
Biomech Model Mechanobiol. 2015 Jan;14(1):1-13. doi: 10.1007/s10237-014-0581-9. Epub 2014 Apr 10.
10
Time-dependent cellular morphogenesis and matrix stiffening in proteolytically responsive hydrogels.
Acta Biomater. 2013 Aug;9(8):7630-9. doi: 10.1016/j.actbio.2013.04.030. Epub 2013 Apr 25.

引用本文的文献

1
Matrix degradation enhances stress relaxation, regulating cell adhesion and spreading.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2416771122. doi: 10.1073/pnas.2416771122. Epub 2025 Mar 25.
2
Degradability tunes ECM stress relaxation and cellular mechanics.
bioRxiv. 2024 Jul 29:2024.07.28.605514. doi: 10.1101/2024.07.28.605514.
3
What are the key mechanical mechanisms governing integrin-mediated cell migration in three-dimensional fiber networks?
Biomech Model Mechanobiol. 2023 Aug;22(4):1177-1192. doi: 10.1007/s10237-023-01709-2. Epub 2023 Jun 15.
4
REVIEW ARTICLE Engineering bio-inks for 3D bioprinting cell mechanical microenvironment.
Int J Bioprint. 2022 Oct 29;9(1):632. doi: 10.18063/ijb.v9i1.632. eCollection 2023.
5
Surface-tension-induced budding drives alveologenesis in human mammary gland organoids.
Nat Phys. 2021 Oct;17:1130-1136. doi: 10.1038/s41567-021-01336-7. Epub 2021 Oct 4.
8
A computational framework for modeling cell-matrix interactions in soft biological tissues.
Biomech Model Mechanobiol. 2021 Oct;20(5):1851-1870. doi: 10.1007/s10237-021-01480-2. Epub 2021 Jun 25.
9
Mechanical homeostasis in tissue equivalents: a review.
Biomech Model Mechanobiol. 2021 Jun;20(3):833-850. doi: 10.1007/s10237-021-01433-9. Epub 2021 Mar 8.

本文引用的文献

2
An AFM-based stiffness clamp for dynamic control of rigidity.
PLoS One. 2011 Mar 8;6(3):e17807. doi: 10.1371/journal.pone.0017807.
3
Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness.
Integr Biol (Camb). 2011 Apr;3(4):267-78. doi: 10.1039/c0ib00095g. Epub 2011 Jan 6.
4
Airway branching morphogenesis in three dimensional culture.
Respir Res. 2010 Nov 25;11(1):162. doi: 10.1186/1465-9921-11-162.
5
Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression.
Cold Spring Harb Perspect Biol. 2011 Jan 1;3(1):a003228. doi: 10.1101/cshperspect.a003228.
6
Branch formation during organ development.
Wiley Interdiscip Rev Syst Biol Med. 2010 Nov-Dec;2(6):734-41. doi: 10.1002/wsbm.96.
7
Endogenous patterns of mechanical stress are required for branching morphogenesis.
Integr Biol (Camb). 2010 Sep;2(9):424-34. doi: 10.1039/c0ib00040j. Epub 2010 Aug 17.
8
Predicting bulk mechanical properties of cellularized collagen gels using multiphoton microscopy.
Acta Biomater. 2010 Dec;6(12):4657-65. doi: 10.1016/j.actbio.2010.07.004. Epub 2010 Jul 8.
9
A model for cyst lumen expansion and size regulation via fluid secretion.
J Theor Biol. 2010 Jun 7;264(3):1077-88. doi: 10.1016/j.jtbi.2010.03.021. Epub 2010 Mar 19.
10
The role of collagen reorganization on mammary epithelial morphogenesis in a 3D culture model.
Biomaterials. 2010 May;31(13):3622-30. doi: 10.1016/j.biomaterials.2010.01.077. Epub 2010 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验