Suppr超能文献

基于转移概率的音节流隐式分割:一项脑磁图研究。

Implicit segmentation of a stream of syllables based on transitional probabilities: an MEG study.

作者信息

Teinonen Tuomas, Huotilainen Minna

机构信息

Department of Psychology, Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki, P.O. Box 9, 00014 Helsinki, Finland.

出版信息

J Psycholinguist Res. 2012 Feb;41(1):71-82. doi: 10.1007/s10936-011-9182-2.

Abstract

Statistical segmentation of continuous speech, i.e., the ability to utilise transitional probabilities between syllables in order to detect word boundaries, is reflected in the brain's auditory event-related potentials (ERPs). The N1 and N400 ERP components are typically enhanced for word onsets compared to random syllables during active listening. We used magnetoencephalography (MEG) to record event-related fields (ERFs) simultaneously with ERPs to syllables in a continuous sequence consisting of ten repeating tri-syllabic pseudowords and unexpected syllables presented between these pseudowords. We found the responses to differ between the syllables within the pseudowords and between the expected and unexpected syllables, reflecting an implicit process extracting the statistical characteristics of the sequence and monitoring for unexpected syllables.

摘要

连续语音的统计分割,即利用音节之间的过渡概率来检测单词边界的能力,反映在大脑的听觉事件相关电位(ERP)中。在主动聆听过程中,与随机音节相比,单词起始时N1和N400 ERP成分通常会增强。我们使用脑磁图(MEG)与ERP同时记录事件相关场(ERF),这些ERP是针对由十个重复的三音节假词组成的连续序列中的音节以及出现在这些假词之间的意外音节。我们发现,对假词内的音节以及预期和意外音节之间的反应存在差异,这反映了一个提取序列统计特征并监测意外音节的隐性过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验