Suppr超能文献

旋律模式的统计学习影响大脑对错误音符的反应。

Statistical Learning of Melodic Patterns Influences the Brain's Response to Wrong Notes.

机构信息

Albert Einstein College of Medicine, Bronx, NY.

The Hebrew University of Jerusalem.

出版信息

J Cogn Neurosci. 2017 Dec;29(12):2114-2122. doi: 10.1162/jocn_a_01181. Epub 2017 Aug 29.

Abstract

The theory of statistical learning has been influential in providing a framework for how humans learn to segment patterns of regularities from continuous sensory inputs, such as speech and music. This form of learning is based on statistical cues and is thought to underlie the ability to learn to segment patterns of regularities from continuous sensory inputs, such as the transition probabilities in speech and music. However, the connection between statistical learning and brain measurements is not well understood. Here we focus on ERPs in the context of tone sequences that contain statistically cohesive melodic patterns. We hypothesized that implicit learning of statistical regularities would influence what was held in auditory working memory. We predicted that a wrong note occurring within a cohesive pattern (within-pattern deviant) would lead to a significantly larger brain signal than a wrong note occurring between cohesive patterns (between-pattern deviant), even though both deviant types were equally likely to occur with respect to the global tone sequence. We discuss this prediction within a simple Markov model framework that learns the transition probability regularities within the tone sequence. Results show that signal strength was stronger when cohesive patterns were violated and demonstrate that the transitional probability of the sequence influences the memory basis for melodic patterns. Our results thus characterize how informational units are stored in auditory memory trace for deviance detection and provide new evidence about how the brain organizes sequential sound input that is useful for perception.

摘要

统计学习理论在为人类如何从连续的感官输入(如语音和音乐)中学习分割有规律的模式提供框架方面具有影响力。这种学习形式基于统计线索,被认为是从连续的感官输入中学习分割有规律的模式的能力的基础,例如语音和音乐中的转换概率。然而,统计学习和大脑测量之间的联系还没有得到很好的理解。在这里,我们关注的是在包含有统计一致性旋律模式的音序背景下的 ERPs。我们假设,对统计规律的隐性学习将影响听觉工作记忆中存储的内容。我们预测,在一个有凝聚力的模式(模式内偏差)中出现一个错误的音符,会比在两个有凝聚力的模式之间(模式间偏差)出现一个错误的音符产生更大的大脑信号,尽管从全局音序来看,这两种偏差类型出现的可能性是相等的。我们在一个简单的马尔可夫模型框架内讨论了这个预测,该模型学习了音序中的转换概率规律。结果表明,当有凝聚力的模式被违反时,信号强度更强,这表明序列的转移概率影响了旋律模式的记忆基础。因此,我们的结果描述了信息单元如何在听觉记忆痕迹中存储以供偏差检测,并提供了关于大脑如何组织对感知有用的连续声音输入的新证据。

相似文献

3
The Music of Silence: Part II: Music Listening Induces Imagery Responses.无声之乐:第二部分:音乐聆听引发意象反应。
J Neurosci. 2021 Sep 1;41(35):7449-7460. doi: 10.1523/JNEUROSCI.0184-21.2021. Epub 2021 Aug 2.
8
Music training and working memory: an ERP study.音乐训练与工作记忆:一项 ERP 研究。
Neuropsychologia. 2011 Apr;49(5):1083-1094. doi: 10.1016/j.neuropsychologia.2011.02.001. Epub 2011 Feb 17.
9
Implicit and explicit statistical learning of tone sequences across spectral shifts.跨频谱偏移的声调序列的内隐和外显统计学习
Neuropsychologia. 2014 Oct;63:194-204. doi: 10.1016/j.neuropsychologia.2014.08.028. Epub 2014 Sep 2.

引用本文的文献

5
The Brain Tracks Multiple Predictions About the Auditory Scene.大脑追踪关于听觉场景的多种预测。
Front Hum Neurosci. 2021 Nov 3;15:747769. doi: 10.3389/fnhum.2021.747769. eCollection 2021.
9
Perceptron Learning and Classification in a Modeled Cortical Pyramidal Cell.模拟皮质锥体细胞中的感知器学习与分类
Front Comput Neurosci. 2020 Apr 24;14:33. doi: 10.3389/fncom.2020.00033. eCollection 2020.

本文引用的文献

7
Learning non-adjacent regularities at age 0 ; 7.0 岁学习非相邻规则 ; 7.
J Child Lang. 2013 Sep;40(4):860-72. doi: 10.1017/S0305000912000256. Epub 2012 Aug 6.
8
Activity recall in a visual cortical ensemble.视觉皮层神经元集群中的活动记忆。
Nat Neurosci. 2012 Jan 22;15(3):449-55, S1-2. doi: 10.1038/nn.3036.
9
Statistical learning effects in musicians and non-musicians: an MEG study.音乐家和非音乐家的统计学习效应:一项 MEG 研究。
Neuropsychologia. 2012 Jan;50(2):341-9. doi: 10.1016/j.neuropsychologia.2011.12.007. Epub 2011 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验