Suppr超能文献

通过基于总体的局部方向估计来重建纤维轨迹。

Reconstruction of fiber trajectories via population-based estimation of local orientations.

作者信息

Yap Pew-Thian, Gilmore John H, Lin Weili, Shen Dinggang

机构信息

BRIC, Department of Radiology, University of North Carolina at Chapel Hill, NC, USA.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 2):133-40. doi: 10.1007/978-3-642-23629-7_17.

Abstract

White matter fiber tractography plays a key role in the in vivo understanding of brain circuitry. For tract-based comparison of a population of images, a common approach is to first generate an atlas by averaging, after spatial normalization, all images in the population, and then perform tractography using the constructed atlas. The reconstructed fiber trajectories form a common geometry onto which diffusion properties of each individual subject can be projected based on the corresponding locations in the subject native space. However, in the case of High Angular Resolution Diffusion Imaging (HARDI), where modeling fiber crossings is an important goal, the above-mentioned averaging method for generating an atlas results in significant error in the estimation of local fiber orientations and causes a major loss of fiber crossings. These limitatitons have significant impact on the accuracy of the reconstructed fiber trajectories and jeopardize subsequent tract-based analysis. As a remedy, we present in this paper a more effective means of performing tractography at a population level. Our method entails determining a bipolar Watson distribution at each voxel location based on information given by all images in the population, giving us not only the local principal orientations of the fiber pathways, but also confidence levels of how reliable these orientations are across subjects. The distribution field is then fed as an input to a probabilistic tractography framework for reconstructing a set of fiber trajectories that are consistent across all images in the population. We observe that the proposed method, called PoPTRACT, results in significantly better preservation of fiber crossings, and hence yields better trajectory reconstruction in the atlas space.

摘要

白质纤维束成像在对脑回路的活体理解中起着关键作用。对于基于束的群体图像比较,一种常见的方法是首先在空间归一化后,通过对群体中的所有图像进行平均来生成一个图谱,然后使用构建的图谱进行纤维束成像。重建的纤维轨迹形成一种通用的几何结构,基于每个个体受试者在其自身空间中的相应位置,可以将每个个体受试者的扩散特性投影到该结构上。然而,在高角分辨率扩散成像(HARDI)中,对纤维交叉进行建模是一个重要目标,上述生成图谱的平均方法会导致局部纤维方向估计出现显著误差,并导致纤维交叉大量丢失。这些限制对重建纤维轨迹的准确性有重大影响,并危及后续基于束的分析。作为一种补救措施,我们在本文中提出了一种在群体层面进行纤维束成像的更有效方法。我们的方法需要基于群体中所有图像给出的信息,在每个体素位置确定一个双极沃森分布,这不仅能让我们得到纤维束路径的局部主方向,还能得到这些方向在不同受试者之间的可靠程度的置信水平。然后,将该分布场作为输入,输入到一个概率纤维束成像框架中,以重建一组在群体中的所有图像上都一致的纤维轨迹。我们观察到,所提出的称为PoPTRACT的方法能显著更好地保留纤维交叉,因此在图谱空间中能产生更好的轨迹重建。

相似文献

2
PopTract: population-based tractography.PopTract:基于人群的束追踪。
IEEE Trans Med Imaging. 2011 Oct;30(10):1829-40. doi: 10.1109/TMI.2011.2154385. Epub 2011 May 12.
8
Probabilistic tractography using Q-ball modeling and particle filtering.使用Q球模型和粒子滤波的概率性纤维束成像
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):209-16. doi: 10.1007/978-3-642-23629-7_26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验