Suppr超能文献

应用于新生儿神经元纤维轨迹重建的纵向纤维束成像。

Longitudinal tractography with application to neuronal fiber trajectory reconstruction in neonates.

作者信息

Yap Pew-Thian, Gilmore John H, Lin Weili, Shen Dinggang

机构信息

BRIC, Department of Radiology and University of North Carolina at Chapel Hill, NC, USA.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 2):66-73. doi: 10.1007/978-3-642-23629-7_9.

Abstract

This paper presents a novel tractography algorithm for more accurate reconstruction of fiber trajectories in low SNR diffusion-weighted images, such as neonatal scans. We leverage information from a later-time-point longitudinal scan to obtain more reliable estimates of local fiber orientations. Specifically, we determine the orientation posterior probability at each voxel location by utilizing prior information given by the longitudinal scan, and with the likelihood function formulated based on the Watson distribution. We incorporate this Bayesian model of local orientations into a state-space model for particle-filtering-based probabilistic tracking, catering for the possibility of crossing fibers by modeling multiple orientations per voxel. Regularity of fibers is enforced by encouraging smooth transitions of orientations in subsequent locations traversed by the fiber. Experimental results performed on neonatal scans indicate that fiber reconstruction is significantly improved with less stray fibers and is closer to what one would expect anatomically.

摘要

本文提出了一种新颖的纤维束成像算法,用于在低信噪比扩散加权图像(如新生儿扫描图像)中更准确地重建纤维轨迹。我们利用来自后期纵向扫描的信息来获得更可靠的局部纤维方向估计。具体而言,我们通过利用纵向扫描给出的先验信息,并基于沃森分布制定似然函数,来确定每个体素位置的方向后验概率。我们将这种局部方向的贝叶斯模型纳入基于粒子滤波的概率跟踪的状态空间模型中,通过对每个体素的多个方向进行建模来应对纤维交叉的可能性。通过鼓励纤维在后续穿过的位置上方向的平滑过渡来增强纤维的规则性。在新生儿扫描上进行的实验结果表明,纤维重建有显著改善,杂散纤维更少,并且更接近解剖学上的预期。

相似文献

6
Probabilistic fiber tracking using particle filtering.使用粒子滤波的概率纤维追踪
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):144-52. doi: 10.1007/978-3-540-75759-7_18.
9
PopTract: population-based tractography.PopTract:基于人群的束追踪。
IEEE Trans Med Imaging. 2011 Oct;30(10):1829-40. doi: 10.1109/TMI.2011.2154385. Epub 2011 May 12.

引用本文的文献

2
Bayesian Tractography Using Geometric Shape Priors.使用几何形状先验的贝叶斯纤维束成像
Front Neurosci. 2017 Sep 7;11:483. doi: 10.3389/fnins.2017.00483. eCollection 2017.
4
Large deformation diffeomorphic registration of diffusion-weighted imaging data.扩散加权成像数据的大变形微分同胚配准
Med Image Anal. 2014 Dec;18(8):1290-8. doi: 10.1016/j.media.2014.06.012. Epub 2014 Jul 21.
6
Fiber-driven resolution enhancement of diffusion-weighted images.纤维驱动的弥散加权图像分辨率增强。
Neuroimage. 2014 Jan 1;84:939-50. doi: 10.1016/j.neuroimage.2013.09.016. Epub 2013 Sep 21.
7
Spatial transformation of DWI data using non-negative sparse representation.利用非负稀疏表示进行 DWI 数据的空间变换。
IEEE Trans Med Imaging. 2012 Nov;31(11):2035-49. doi: 10.1109/TMI.2012.2204766. Epub 2012 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验