Yap Pew-Thian, Gilmore John H, Lin Weili, Shen Dinggang
BRIC, Department of Radiology and University of North Carolina at Chapel Hill, NC, USA.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):66-73. doi: 10.1007/978-3-642-23629-7_9.
This paper presents a novel tractography algorithm for more accurate reconstruction of fiber trajectories in low SNR diffusion-weighted images, such as neonatal scans. We leverage information from a later-time-point longitudinal scan to obtain more reliable estimates of local fiber orientations. Specifically, we determine the orientation posterior probability at each voxel location by utilizing prior information given by the longitudinal scan, and with the likelihood function formulated based on the Watson distribution. We incorporate this Bayesian model of local orientations into a state-space model for particle-filtering-based probabilistic tracking, catering for the possibility of crossing fibers by modeling multiple orientations per voxel. Regularity of fibers is enforced by encouraging smooth transitions of orientations in subsequent locations traversed by the fiber. Experimental results performed on neonatal scans indicate that fiber reconstruction is significantly improved with less stray fibers and is closer to what one would expect anatomically.
本文提出了一种新颖的纤维束成像算法,用于在低信噪比扩散加权图像(如新生儿扫描图像)中更准确地重建纤维轨迹。我们利用来自后期纵向扫描的信息来获得更可靠的局部纤维方向估计。具体而言,我们通过利用纵向扫描给出的先验信息,并基于沃森分布制定似然函数,来确定每个体素位置的方向后验概率。我们将这种局部方向的贝叶斯模型纳入基于粒子滤波的概率跟踪的状态空间模型中,通过对每个体素的多个方向进行建模来应对纤维交叉的可能性。通过鼓励纤维在后续穿过的位置上方向的平滑过渡来增强纤维的规则性。在新生儿扫描上进行的实验结果表明,纤维重建有显著改善,杂散纤维更少,并且更接近解剖学上的预期。