Suppr超能文献

通过结合上下文偏微分方程流与约束球面反卷积改善扩散张量成像中的纤维排列

Improving Fiber Alignment in HARDI by Combining Contextual PDE Flow with Constrained Spherical Deconvolution.

作者信息

Portegies J M, Fick R H J, Sanguinetti G R, Meesters S P L, Girard G, Duits R

机构信息

Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands.

Athena Project-Team, INRIA Sophia Antipolis-Méditerranée, France.

出版信息

PLoS One. 2015 Oct 14;10(10):e0138122. doi: 10.1371/journal.pone.0138122. eCollection 2015.

Abstract

We propose two strategies to improve the quality of tractography results computed from diffusion weighted magnetic resonance imaging (DW-MRI) data. Both methods are based on the same PDE framework, defined in the coupled space of positions and orientations, associated with a stochastic process describing the enhancement of elongated structures while preserving crossing structures. In the first method we use the enhancement PDE for contextual regularization of a fiber orientation distribution (FOD) that is obtained on individual voxels from high angular resolution diffusion imaging (HARDI) data via constrained spherical deconvolution (CSD). Thereby we improve the FOD as input for subsequent tractography. Secondly, we introduce the fiber to bundle coherence (FBC), a measure for quantification of fiber alignment. The FBC is computed from a tractography result using the same PDE framework and provides a criterion for removing the spurious fibers. We validate the proposed combination of CSD and enhancement on phantom data and on human data, acquired with different scanning protocols. On the phantom data we find that PDE enhancements improve both local metrics and global metrics of tractography results, compared to CSD without enhancements. On the human data we show that the enhancements allow for a better reconstruction of crossing fiber bundles and they reduce the variability of the tractography output with respect to the acquisition parameters. Finally, we show that both the enhancement of the FODs and the use of the FBC measure on the tractography improve the stability with respect to different stochastic realizations of probabilistic tractography. This is shown in a clinical application: the reconstruction of the optic radiation for epilepsy surgery planning.

摘要

我们提出了两种策略来提高从扩散加权磁共振成像(DW-MRI)数据计算得到的纤维束成像结果的质量。这两种方法都基于相同的偏微分方程(PDE)框架,该框架在位置和方向的耦合空间中定义,与一个随机过程相关联,该随机过程描述了在保留交叉结构的同时增强细长结构。在第一种方法中,我们使用增强型PDE对纤维方向分布(FOD)进行上下文正则化,该FOD是通过约束球面反卷积(CSD)从高角分辨率扩散成像(HARDI)数据的各个体素中获得的。由此,我们改进了作为后续纤维束成像输入的FOD。其次,我们引入了纤维到束的相干性(FBC),这是一种用于量化纤维排列的度量。FBC是使用相同的PDE框架从纤维束成像结果中计算得到的,并提供了去除伪纤维的标准。我们在使用不同扫描协议采集的体模数据和人体数据上验证了所提出的CSD和增强方法的组合。在体模数据上,我们发现与未增强的CSD相比,PDE增强改善了纤维束成像结果的局部度量和全局度量。在人体数据上,我们表明增强方法能够更好地重建交叉纤维束,并且相对于采集参数减少了纤维束成像输出的变异性。最后,我们表明FOD的增强以及在纤维束成像上使用FBC度量都提高了相对于概率纤维束成像的不同随机实现的稳定性。这在一个临床应用中得到了展示:用于癫痫手术规划的视辐射重建。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e03/4605742/bce4a3fcfa61/pone.0138122.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验