Suppr超能文献

功能磁共振成像中血流动力学响应函数的自适应空间估计

Adaptively and spatially estimating the hemodynamic response functions in fMRI.

作者信息

Wang Jiaping, Zhu Hongtu, Fan Jianqing, Giovanello Kelly, Lin Weili

机构信息

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 2):269-76. doi: 10.1007/978-3-642-23629-7_33.

Abstract

In an event-related functional MRI data analysis, an accurate and robust extraction of the hemodynamic response function (HRF) and its associated statistics (e.g., magnitude, width, and time to peak) is critical to infer quantitative information about the relative timing of the neuronal events in different brain regions. The aim of this paper is to develop a multiscale adaptive smoothing model (MASM) to accurately estimate HRFs pertaining to each stimulus sequence across all voxels. MASM explicitly accounts for both spatial and temporal smoothness information, while incorporating such information to adaptively estimate HRFs in the frequency domain. One simulation study and a real data set are used to demonstrate the methodology and examine its finite sample performance in HRF estimation, which confirms that MASM significantly outperforms the existing methods including the smooth finite impulse response model, the inverse logit model and the canonical HRF.

摘要

在事件相关功能磁共振成像数据分析中,准确且稳健地提取血液动力学响应函数(HRF)及其相关统计量(例如幅度、宽度和峰值时间)对于推断不同脑区神经元事件相对时间的定量信息至关重要。本文的目的是开发一种多尺度自适应平滑模型(MASM),以准确估计所有体素上与每个刺激序列相关的HRF。MASM明确考虑了空间和时间平滑信息,同时将这些信息纳入以在频域中自适应估计HRF。通过一项模拟研究和一个真实数据集来演示该方法,并检验其在HRF估计中的有限样本性能,这证实了MASM显著优于包括平滑有限脉冲响应模型、逆对数几率模型和标准HRF在内的现有方法。

相似文献

本文引用的文献

2
Spatially adaptive mixture modeling for analysis of FMRI time series.基于空间适应性混合模型的 fMRI 时间序列分析。
IEEE Trans Med Imaging. 2010 Apr;29(4):1059-74. doi: 10.1109/TMI.2010.2042064. Epub 2010 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验