Suppr超能文献

一种用于检测功能磁共振成像中显著激活的新统计方法。

A new statistical approach to detecting significant activation in functional MRI.

作者信息

Marchini J L, Ripley B D

机构信息

Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, United Kingdom.

出版信息

Neuroimage. 2000 Oct;12(4):366-80. doi: 10.1006/nimg.2000.0628.

Abstract

There are many ways to detect activation patterns in a time series of observations at a single voxel in a functional magnetic resonance imaging study. The critical problem is to estimate the statistical significance, which depends on the estimation of both the magnitude of the response to the stimulus and the serial dependence of the time series and especially on the assumptions made in that estimation. We show that for experimental designs with periodic stimuli, only a few aspects of the serial dependence are important and these can be estimated reliably via nonparametric estimation of the spectral density of the time series, whereas existing techniques are biased by their assumptions. The linear model with (stationary) serially dependent errors can be analyzed entirely in frequency domain, and doing so provides many insights. In particular, we introduce a technique to detect periodic activations and show that it has a distribution theory that enables us to assign significance levels down to 1 in 100,000, levels which are needed when a whole brain image is under consideration. Nonparametric spectral density estimation is shown to be self-calibrating and accurate when compared to several other time-domain approaches. The technique is especially resistant to high frequency artefacts that we have found in some datasets and we demonstrate that time-domain approaches may be sufficiently susceptible to these effects to give misleading results. The method is easily generalized to handle event-related designs. We found it necessary to consider the trends in the time series carefully and use nonlinear filters to remove the trends and robust techniques to remove "spikes." Using this in connection with our techniques allows us to detect activations in clumps of a few (even one) voxel in periodic designs, yet produce essentially no false positive detections at any voxels in null datasets.

摘要

在功能磁共振成像研究中,有多种方法可用于检测单个体素处观测时间序列中的激活模式。关键问题是估计统计显著性,这取决于对刺激响应幅度以及时间序列的序列依赖性的估计,尤其取决于该估计中所做的假设。我们表明,对于具有周期性刺激的实验设计,序列依赖性中只有几个方面是重要的,并且可以通过对时间序列频谱密度的非参数估计可靠地进行估计,而现有技术会因其假设而产生偏差。具有(平稳)序列相关误差的线性模型可以完全在频域中进行分析,这样做能提供许多见解。特别是,我们引入了一种检测周期性激活的技术,并表明它具有一种分布理论,使我们能够将显著性水平设定到十万分之一,这在考虑全脑图像时是必需的水平。与其他几种时域方法相比,非参数频谱密度估计显示出自我校准且准确。该技术对我们在一些数据集中发现的高频伪影具有特别的抗性,并且我们证明时域方法可能对这些影响足够敏感,从而给出误导性结果。该方法很容易推广以处理与事件相关的设计。我们发现有必要仔细考虑时间序列中的趋势,并使用非线性滤波器去除趋势,以及使用稳健技术去除“尖峰”。将此与我们的技术结合使用,使我们能够在周期性设计中检测到少数(甚至一个)体素簇中的激活,同时在空数据集的任何体素处基本上不产生假阳性检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验