Suppr超能文献

脊椎统计形状模型的自动构建

Automatic construction of statistical shape models for vertebrae.

作者信息

Becker Meike, Kirschner Matthias, Fuhrmann Simon, Wesarg Stefan

机构信息

GRIS, TU Darmstadt, Fraunhoferstrasse 5, 64287 Darmstadt, Germany.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 2):500-7. doi: 10.1007/978-3-642-23629-7_61.

Abstract

For segmenting complex structures like vertebrae, a priori knowledge by means of statistical shape models (SSMs) is often incorporated. One of the main challenges using SSMs is the solution of the correspondence problem. In this work we present a generic automated approach for solving the correspondence problem for vertebrae. We determine two closed loops on a reference shape and propagate them consistently to the remaining shapes of the training set. Then every shape is cut along these loops and parameterized to a rectangle. There, we optimize a novel combined energy to establish the correspondences and to reduce the unavoidable area and angle distortion. Finally, we present an adaptive resampling method to achieve a good shape representation. A qualitative and quantitative evaluation shows that using our method we can generate SSMs of higher quality than the ICP approach.

摘要

对于分割诸如椎骨这样的复杂结构,通常会借助统计形状模型(SSM)纳入先验知识。使用SSM的主要挑战之一是对应问题的解决方案。在这项工作中,我们提出了一种通用的自动化方法来解决椎骨的对应问题。我们在参考形状上确定两个闭环,并将它们一致地传播到训练集的其余形状。然后,沿着这些环切割每个形状,并将其参数化为矩形。在那里,我们优化一种新颖的组合能量以建立对应关系并减少不可避免的面积和角度失真。最后,我们提出一种自适应重采样方法以获得良好的形状表示。定性和定量评估表明,使用我们的方法可以生成比ICP方法质量更高的SSM。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验