Kirschner Matthias, Becker Meike, Wesarg Stefan
Graphisch-Interaktive Systeme, Technische Universität Darmstadt, Fraunhoferstrasse 5, 64283 Darmstadt, Germany.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):492-9. doi: 10.1007/978-3-642-23629-7_60.
The Active Shape Model (ASM) is a segmentation algorithm which uses a Statistical Shape Model (SSM) to constrain segmentations to 'plausible' shapes. This makes it possible to robustly segment organs with low contrast to adjacent structures. The standard SSM assumes that shapes are Gaussian distributed, which implies that unseen shapes can be expressed by linear combinations of the training shapes. Although this assumption does not always hold true, and several nonlinear SSMs have been proposed in the literature, virtually all applications in medical imaging use the linear SSM. In this work, we investigate 3D ASM segmentation with a nonlinear SSM based on Kernel PCA. We show that a recently published energy minimization approach for constraining shapes with a linear shape model extends to the nonlinear case, and overcomes shortcomings of previously published approaches. Our approach for nonlinear ASM segmentation is applied to vertebra segmentation and evaluated against the linear model.
主动形状模型(ASM)是一种分割算法,它使用统计形状模型(SSM)将分割约束到“合理”形状。这使得能够稳健地分割与相邻结构对比度低的器官。标准的SSM假设形状呈高斯分布,这意味着未见形状可以通过训练形状的线性组合来表示。尽管这个假设并不总是成立,并且文献中已经提出了几种非线性SSM,但医学成像中的几乎所有应用都使用线性SSM。在这项工作中,我们研究基于核主成分分析(Kernel PCA)的非线性SSM的三维ASM分割。我们表明,最近发表的一种用线性形状模型约束形状的能量最小化方法可以扩展到非线性情况,并克服了先前发表方法的缺点。我们的非线性ASM分割方法应用于椎体分割,并与线性模型进行了评估比较。