Suppr超能文献

苯并[a]芘暴露的调控和毒性反应的转录特征。

Transcriptional signatures of regulatory and toxic responses to benzo-[a]-pyrene exposure.

机构信息

Cellular Networks and Systems Biology, Biotechnology Center, TU Dresden, Dresden, Germany.

出版信息

BMC Genomics. 2011 Oct 13;12:502. doi: 10.1186/1471-2164-12-502.

Abstract

BACKGROUND

Small molecule ligands often have multiple effects on the transcriptional program of a cell: they trigger a receptor specific response and additional, indirect responses ("side effects"). Distinguishing those responses is important for understanding side effects of drugs and for elucidating molecular mechanisms of toxic chemicals.

RESULTS

We explored this problem by exposing cells to the environmental contaminant benzo-[a]-pyrene (B[a]P). B[a]P exposure activates the aryl hydrocarbon receptor (Ahr) and causes toxic stress resulting in transcriptional changes that are not regulated through Ahr. We sought to distinguish these two types of responses based on a time course of expression changes measured after B[a]P exposure. Using Random Forest machine learning we classified 81 primary Ahr responders and 1,308 genes regulated as side effects. Subsequent weighted clustering gave further insight into the connection between expression pattern, mode of regulation, and biological function. Finally, the accuracy of the predictions was supported through extensive experimental validation.

CONCLUSION

Using a combination of machine learning followed by extensive experimental validation, we have further expanded the known catalog of genes regulated by the environmentally sensitive transcription factor Ahr. More broadly, this study presents a strategy for distinguishing receptor-dependent responses and side effects based on expression time courses.

摘要

背景

小分子配体通常对细胞的转录程序有多种影响:它们触发受体特异性反应和额外的间接反应(“副作用”)。区分这些反应对于了解药物的副作用和阐明有毒化学物质的分子机制很重要。

结果

我们通过使细胞暴露于环境污染物苯并[a]芘(B[a]P)来探讨这个问题。B[a]P 暴露会激活芳香烃受体(Ahr),并导致毒性应激,从而导致不受 Ahr 调节的转录变化。我们试图根据 B[a]P 暴露后测量的表达变化的时间过程来区分这两种反应。使用随机森林机器学习,我们对 81 个主要 Ahr 反应基因和 1308 个作为副作用调节的基因进行了分类。随后的加权聚类进一步深入了解了表达模式、调节方式和生物学功能之间的联系。最后,通过广泛的实验验证支持了预测的准确性。

结论

我们使用机器学习的组合,随后进行广泛的实验验证,进一步扩展了已知受环境敏感转录因子 Ahr 调节的基因目录。更广泛地说,这项研究提出了一种基于表达时间过程区分受体依赖性反应和副作用的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/3215681/ed133bc91655/1471-2164-12-502-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验