Department of Microbiology, University College Cork, Cork, Ireland.
BMC Microbiol. 2011 Oct 13;11:229. doi: 10.1186/1471-2180-11-229.
Styrene is a toxic and potentially carcinogenic alkenylbenzene used extensively in the polymer processing industry. Significant quantities of contaminated liquid waste are generated annually as a consequence. However, styrene is not a true xenobiotic and microbial pathways for its aerobic assimilation, via an intermediate, phenylacetic acid, have been identified in a diverse range of environmental isolates. The potential for microbial bioremediation of styrene waste has received considerable research attention over the last number of years. As a result the structure, organisation and encoded function of the genes responsible for styrene and phenylacetic acid sensing, uptake and catabolism have been elucidated. However, a limited understanding persists in relation to host specific regulatory molecules which may impart additional control over these pathways. In this study the styrene degrader Pseudomonas putida CA-3 was subjected to random mini-Tn5 mutagenesis and mutants screened for altered styrene/phenylacetic acid utilisation profiles potentially linked to non-catabolon encoded regulatory influences.
One mutant, D7, capable of growth on styrene, but not on phenylacetic acid, harboured a Tn5 insertion in the rpoN gene encoding σ54. Complementation of the D7 mutant with the wild type rpoN gene restored the ability of this strain to utilise phenylacetic acid as a sole carbon source. Subsequent RT-PCR analyses revealed that a phenylacetate permease, PaaL, was expressed in wild type P. putida CA-3 cells utilising styrene or phenylacetic acid, but could not be detected in the disrupted D7 mutant. Expression of plasmid borne paaL in mutant D7 was found to fully restore the phenylacetic acid utilisation capacity of the strain to wild type levels. Bioinformatic analysis of the paaL promoter from P. putida CA-3 revealed two σ54 consensus binding sites in a non-archetypal configuration, with the transcriptional start site being resolved by primer extension analysis. Comparative analyses of genomes encoding phenylacetyl CoA, (PACoA), catabolic operons identified a common association among styrene degradation linked PACoA catabolons in Pseudomonas species studied to date.
In summary, this is the first study to report RpoN dependent transcriptional activation of the PACoA catabolon paaL gene, encoding a transport protein essential for phenylacetic acid utilisation in P. putida CA-3. Bioinformatic analysis is provided to suggest this regulatory link may be common among styrene degrading Pseudomonads.
苯乙烯是一种有毒且潜在致癌的烯基苯,广泛用于聚合物加工行业。因此,每年都会产生大量受污染的液态废物。然而,苯乙烯并不是真正的异生物质,微生物已经在各种环境分离物中确定了其好氧同化的途径,通过中间产物苯乙酸。在过去的几年中,微生物修复苯乙烯废物的潜力引起了相当多的研究关注。因此,负责苯乙烯和苯乙酸感应、摄取和代谢的基因的结构、组织和编码功能已经阐明。然而,对于可能对这些途径施加额外控制的宿主特异性调节分子,仍然存在有限的理解。在这项研究中,苯乙烯降解菌恶臭假单胞菌 CA-3 经历了随机 mini-Tn5 诱变,筛选出可能与非 catabolon 编码调节影响相关的改变苯乙烯/苯乙酸利用谱的突变体。
一个能够在苯乙烯上生长但不能在苯乙酸上生长的突变体 D7,携带 Tn5 插入 rpoN 基因,该基因编码 σ54。用野生型 rpoN 基因互补 D7 突变体恢复了该菌株利用苯乙酸作为唯一碳源的能力。随后的 RT-PCR 分析表明,在利用苯乙烯或苯乙酸的野生型恶臭假单胞菌 CA-3 细胞中表达了苯乙酸透性酶 PaaL,但在缺失的 D7 突变体中无法检测到。发现质粒携带的 paaL 在突变体 D7 中的表达完全恢复了该菌株对野生型水平的苯乙酸利用能力。恶臭假单胞菌 CA-3 的 paaL 启动子的生物信息学分析显示,在非典型构型中有两个 σ54 共识结合位点,通过引物延伸分析确定了转录起始位点。对迄今为止研究的假单胞菌属中与苯乙烯降解相关的 PACoA 分解代谢操纵子的基因组进行比较分析,发现它们之间存在一个常见的关联。
总之,这是第一个报道 RpoN 依赖性转录激活 PACoA 分解代谢操纵子 paaL 基因的研究,该基因编码在恶臭假单胞菌 CA-3 中利用苯乙酸所必需的转运蛋白。提供了生物信息学分析,表明这种调节联系可能在降解苯乙烯的假单胞菌中很常见。