Center for Applied Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
Mol Pharm. 2011 Dec 5;8(6):2069-79. doi: 10.1021/mp200270v. Epub 2011 Oct 25.
Many initially successful anticancer therapies lose effectiveness over time, and eventually, cancer cells acquire resistance to the therapy. Acquired resistance remains a major obstacle to improving remission rates and achieving prolonged disease-free survival. Consequently, novel approaches to overcome or prevent resistance are of significant clinical importance. There has been considerable interest in treating non-small cell lung cancer (NSCLC) with combinations of EGFR-targeted therapeutics (e.g., erlotinib) and cytotoxic therapeutics (e.g., paclitaxel); however, acquired resistance to erlotinib, driven by a variety of mechanisms, remains an obstacle to treatment success. In about 50% of cases, resistance is due to a T790M point mutation in EGFR, and T790M-containing cells ultimately dominate the tumor composition and lead to tumor regrowth. We employed a combined experimental and mathematical modeling-based approach to identify treatment strategies that impede the outgrowth of primary T790M-mediated resistance in NSCLC populations. Our mathematical model predicts the population dynamics of mixtures of sensitive and resistant cells, thereby describing how the tumor composition, initial fraction of resistant cells, and degree of selective pressure influence the time until progression of disease. Model development relied upon quantitative experimental measurements of cell proliferation and death using a novel microscopy approach. Using this approach, we systematically explored the space of combination treatment strategies and demonstrated that optimally timed sequential strategies yielded large improvements in survival outcome relative to monotherapies at the same concentrations. Our investigations revealed regions of the treatment space in which low-dose sequential combination strategies, after preclinical validation, may lead to a tumor reduction and improved survival outcome for patients with T790M-mediated resistance.
许多最初成功的抗癌疗法随着时间的推移会失去效果,最终癌细胞会对治疗产生耐药性。获得性耐药仍然是提高缓解率和实现无病生存延长的主要障碍。因此,克服或预防耐药性的新方法具有重要的临床意义。用 EGFR 靶向治疗药物(如厄洛替尼)和细胞毒性治疗药物(如紫杉醇)联合治疗非小细胞肺癌(NSCLC)引起了相当大的兴趣;然而,由于各种机制导致的厄洛替尼获得性耐药仍然是治疗成功的障碍。在大约 50%的病例中,耐药性是由于 EGFR 中的 T790M 点突变引起的,含有 T790M 的细胞最终主导肿瘤组成,并导致肿瘤重新生长。我们采用了一种结合实验和基于数学模型的方法来确定治疗策略,以阻碍 NSCLC 人群中主要 T790M 介导的耐药性的生长。我们的数学模型预测了敏感和耐药细胞混合物的群体动力学,从而描述了肿瘤组成、初始耐药细胞比例和选择性压力程度如何影响疾病进展的时间。模型开发依赖于使用一种新的显微镜方法对细胞增殖和死亡进行定量实验测量。使用这种方法,我们系统地探索了联合治疗策略的空间,并证明了与相同浓度的单药治疗相比,最佳定时序贯策略可大大提高生存结果。我们的研究揭示了治疗空间中的区域,在这些区域中,经过临床前验证的低剂量序贯联合策略可能会导致肿瘤缩小,并改善 T790M 介导的耐药性患者的生存结果。