Suppr超能文献

应用独立成分分析检测磁共振成像信号中的无声语音。

Applying independent component analysis to detect silent speech in magnetic resonance imaging signals.

机构信息

Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan.

出版信息

Eur J Neurosci. 2011 Oct;34(8):1189-99. doi: 10.1111/j.1460-9568.2011.07856.x. Epub 2011 Oct 13.

Abstract

Independent component analysis (ICA) can be usefully applied to functional imaging studies to evaluate the spatial extent and temporal profile of task-related brain activity. It requires no a priori assumptions about the anatomical areas that are activated or the temporal profile of the activity. We applied spatial ICA to detect a voluntary but hidden response of silent speech. To validate the method against a standard model-based approach, we used the silent speech of a tongue twister as a 'Yes' response to single questions that were delivered at given times. In the first task, we attempted to estimate one number that was chosen by a participant from 10 possibilities. In the second task, we increased the possibilities to 1000. In both tasks, spatial ICA was as effective as the model-based method for determining the number in the subject's mind (80-90% correct per digit), but spatial ICA outperformed the model-based method in terms of time, especially in the 1000-possibility task. In the model-based method, calculation time increased by 30-fold, to 15 h, because of the necessity of testing 1000 possibilities. In contrast, the calculation time for spatial ICA remained as short as 30 min. In addition, spatial ICA detected an unexpected response that occurred by mistake. This advantage was validated in a third task, with 13 500 possibilities, in which participants had the freedom to choose when to make one of four responses. We conclude that spatial ICA is effective for detecting the onset of silent speech, especially when it occurs unexpectedly.

摘要

独立成分分析(ICA)可有效地应用于功能成像研究,以评估与任务相关的大脑活动的空间范围和时间分布。它不需要关于激活的解剖区域或活动的时间分布的先验假设。我们应用空间 ICA 来检测无声言语的自愿但隐藏的反应。为了针对基于标准模型的方法验证该方法,我们使用无声言语作为“是”响应来对在给定时间提供的单个问题进行响应。在第一项任务中,我们尝试估计参与者从 10 个可能性中选择的一个数字。在第二项任务中,我们将可能性增加到 1000。在这两个任务中,空间 ICA 与基于模型的方法一样有效地确定了受试者心中的数字(每个数字的正确率为 80-90%),但在时间方面,空间 ICA 优于基于模型的方法,特别是在 1000 可能性任务中。在基于模型的方法中,由于需要测试 1000 种可能性,计算时间增加了 30 倍,达到 15 小时。相比之下,空间 ICA 的计算时间仍然保持在 30 分钟以内。此外,空间 ICA 检测到了一个意外的错误反应。在第三个任务中,有 13500 个可能性,参与者可以自由选择何时做出四种响应之一,验证了这一优势。我们得出的结论是,空间 ICA 对于检测无声言语的发作非常有效,尤其是当它意外发生时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验