Department of Mathematics, Washington State University, Pullman, WA 99164-3113, USA.
Bull Math Biol. 2012 Apr;74(4):803-33. doi: 10.1007/s11538-011-9688-7. Epub 2011 Oct 14.
The development of spontaneous stationary vegetative patterns in an arid flat environment is investigated by means of a weakly nonlinear diffusive instability analysis applied to the appropriate model system for this phenomenon. In particular, that process can be modeled by a partial differential interaction-diffusion equation system for the plant biomass density and the surface water content defined on an unbounded flat spatial domain. The main results of this analysis can be represented by closed-form plots in the rate of precipitation versus the specific rate of plant density loss parameter space. From these plots, regions corresponding to bare ground and vegetative patterns consisting of parallel stripes, labyrinth-like mazes, hexagonal arrays of gaps, irregular mosaics, and homogeneous distributions of vegetation, respectively, may be identified in this parameter space. Then those theoretical predictions are compared with both relevant observational evidence involving tiger and pearled bush patterns and existing numerical simulations of similar model systems as well as placed in the context of the results from some recent nonlinear vegetative pattern formation studies.
通过对适用于该现象的模型系统进行弱非线性扩散不稳定性分析,研究了干旱平坦环境中自发稳定植被模式的发展。具体来说,这个过程可以通过一个偏微分相互作用-扩散方程系统来建模,该系统用于定义在无界平坦空间域上的植物生物量密度和表面含水量。该分析的主要结果可以在降水率与特定植物密度损失率参数空间的封闭形式图中表示。从这些图中,可以在参数空间中分别识别出对应于裸地和由平行条纹、迷宫状迷宫、六边形间隙阵列、不规则镶嵌和植被均匀分布组成的植被模式的区域。然后,将这些理论预测与涉及老虎和珍珠状灌木模式的相关观测证据以及类似模型系统的现有数值模拟进行比较,并将其置于一些最近的非线性植被模式形成研究的结果背景下。