Suppr超能文献

采用临时血流反转原位增强表面活性物质功能。

In situ enhancement of pulmonary surfactant function using temporary flow reversal.

机构信息

Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, USA.

出版信息

J Appl Physiol (1985). 2012 Jan;112(1):149-58. doi: 10.1152/japplphysiol.00643.2011. Epub 2011 Oct 13.

Abstract

Acute respiratory distress syndrome is a pulmonary disease with a mortality rate of ∼40% and 75,000 deaths annually in the United States. Mechanical ventilation restores airway patency and gas transport but leads to ventilator-induced lung injury. Furthermore, surfactant replacement therapy is ineffective due to surfactant delivery difficulties and deactivation by vascular proteins leaking into the airspace. Here, we demonstrated that surfactant function can be substantially improved (up to 50%) in situ in an in vitro pulmonary airway model using unconventional flows that incorporate a short-term retraction of the air-liquid interface, leading to a net decrease in cellular damage. Computational fluid dynamic simulations provided insights into this method and demonstrated the physicochemical hydrodynamic foundation for the improved surfactant microscale transport and mobility. This study may provide a starting point for developing novel ventilation waveforms to improve surfactant function in edematous airways.

摘要

急性呼吸窘迫综合征是一种肺部疾病,其死亡率约为 40%,在美国每年有 75000 人因此死亡。机械通气可恢复气道通畅和气体传输,但会导致呼吸机相关性肺损伤。此外,由于表面活性剂输送困难以及血管蛋白漏入肺泡空间而失活,表面活性剂替代疗法无效。在这里,我们证明了在体外肺气道模型中使用非常规流动可以显著改善(高达 50%)表面活性剂的功能,该非常规流动包括气液界面的短期回缩,从而导致细胞损伤的净减少。计算流体动力学模拟为该方法提供了深入的了解,并证明了改善表面活性剂微尺度传输和流动性的物理化学流体动力学基础。这项研究可能为开发新型通气波形以改善水肿气道中表面活性剂功能提供了起点。

相似文献

1
In situ enhancement of pulmonary surfactant function using temporary flow reversal.
J Appl Physiol (1985). 2012 Jan;112(1):149-58. doi: 10.1152/japplphysiol.00643.2011. Epub 2011 Oct 13.
2
Microscale distribution and dynamic surface tension of pulmonary surfactant normalize the recruitment of asymmetric bifurcating airways.
J Appl Physiol (1985). 2017 May 1;122(5):1167-1178. doi: 10.1152/japplphysiol.00543.2016. Epub 2017 Jan 5.
3
Surfactant delivery in rat lungs: Comparing 3D geometrical simulation model with experimental instillation.
PLoS Comput Biol. 2019 Oct 17;15(10):e1007408. doi: 10.1371/journal.pcbi.1007408. eCollection 2019 Oct.
10
A theoretical study of surfactant and liquid delivery into the lung.
J Appl Physiol (1985). 1998 Jul;85(1):333-52. doi: 10.1152/jappl.1998.85.1.333.

引用本文的文献

1
Effects of surfactant on propagation and rupture of a liquid plug in a tube.
J Fluid Mech. 2019 Aug 10;872:407-437. doi: 10.1017/jfm.2019.333. Epub 2019 Jun 10.
4
Ventilator-induced lung injury and lung mechanics.
Ann Transl Med. 2018 Oct;6(19):378. doi: 10.21037/atm.2018.06.29.
5
Surfactant-induced Marangoni transport of lipids and therapeutics within the lung.
Curr Opin Colloid Interface Sci. 2018 Jul;36:58-69. doi: 10.1016/j.cocis.2018.01.001. Epub 2018 Jan 13.
6
Linking lung function to structural damage of alveolar epithelium in ventilator-induced lung injury.
Respir Physiol Neurobiol. 2018 Sep;255:22-29. doi: 10.1016/j.resp.2018.05.004. Epub 2018 May 6.
7
Linking Ventilator Injury-Induced Leak across the Blood-Gas Barrier to Derangements in Murine Lung Function.
Front Physiol. 2017 Jul 7;8:466. doi: 10.3389/fphys.2017.00466. eCollection 2017.
8
Computational Models of Ventilator Induced Lung Injury and Surfactant Dysfunction.
Drug Discov Today Dis Models. 2015 Spring;15:17-22. doi: 10.1016/j.ddmod.2014.02.005. Epub 2014 Apr 29.
9
Patterns of recruitment and injury in a heterogeneous airway network model.
J R Soc Interface. 2015 Oct 6;12(111):20150523. doi: 10.1098/rsif.2015.0523.
10
Surface tension in situ in flooded alveolus unaltered by albumin.
J Appl Physiol (1985). 2014 Sep 1;117(5):440-51. doi: 10.1152/japplphysiol.00084.2014. Epub 2014 Jun 26.

本文引用的文献

1
μ-PIV measurements of the ensemble flow fields surrounding a migrating semi-infinite bubble.
Exp Fluids. 2009 Aug 1;47(2):309-320. doi: 10.1007/s00348-009-0662-1.
2
Lagrangian transport properties of pulmonary interfacial flows.
J Fluid Mech. 2011 Nov 9;705:234-257. doi: 10.1017/jfm.2011.391.
3
Quantifying the roles of tidal volume and PEEP in the pathogenesis of ventilator-induced lung injury.
Ann Biomed Eng. 2011 May;39(5):1505-16. doi: 10.1007/s10439-010-0237-6. Epub 2011 Jan 4.
5
Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture.
Am J Physiol Lung Cell Mol Physiol. 2009 Apr;296(4):L574-81. doi: 10.1152/ajplung.90454.2008. Epub 2009 Jan 9.
6
The Pulsatile Propagation of a Finger of Air Within a Fluid-Occluded Cylindrical Tube.
J Fluid Mech. 2008 Apr;601:1-23. doi: 10.1017/S0022112008000360.
7
Physicochemical effects enhance surfactant transport in pulsatile motion of a semi-infinite bubble.
Biophys J. 2009 Jan;96(1):312-27. doi: 10.1529/biophysj.108.131805.
8
Biomechanics of liquid-epithelium interactions in pulmonary airways.
Respir Physiol Neurobiol. 2008 Nov 30;163(1-3):232-43. doi: 10.1016/j.resp.2008.04.008. Epub 2008 Apr 22.
9
Surfactant in airway disease.
Chest. 2008 Apr;133(4):975-80. doi: 10.1378/chest.07-2404.
10
Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems.
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18886-91. doi: 10.1073/pnas.0610868104. Epub 2007 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验