Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, USA.
J Appl Physiol (1985). 2012 Jan;112(1):149-58. doi: 10.1152/japplphysiol.00643.2011. Epub 2011 Oct 13.
Acute respiratory distress syndrome is a pulmonary disease with a mortality rate of ∼40% and 75,000 deaths annually in the United States. Mechanical ventilation restores airway patency and gas transport but leads to ventilator-induced lung injury. Furthermore, surfactant replacement therapy is ineffective due to surfactant delivery difficulties and deactivation by vascular proteins leaking into the airspace. Here, we demonstrated that surfactant function can be substantially improved (up to 50%) in situ in an in vitro pulmonary airway model using unconventional flows that incorporate a short-term retraction of the air-liquid interface, leading to a net decrease in cellular damage. Computational fluid dynamic simulations provided insights into this method and demonstrated the physicochemical hydrodynamic foundation for the improved surfactant microscale transport and mobility. This study may provide a starting point for developing novel ventilation waveforms to improve surfactant function in edematous airways.
急性呼吸窘迫综合征是一种肺部疾病,其死亡率约为 40%,在美国每年有 75000 人因此死亡。机械通气可恢复气道通畅和气体传输,但会导致呼吸机相关性肺损伤。此外,由于表面活性剂输送困难以及血管蛋白漏入肺泡空间而失活,表面活性剂替代疗法无效。在这里,我们证明了在体外肺气道模型中使用非常规流动可以显著改善(高达 50%)表面活性剂的功能,该非常规流动包括气液界面的短期回缩,从而导致细胞损伤的净减少。计算流体动力学模拟为该方法提供了深入的了解,并证明了改善表面活性剂微尺度传输和流动性的物理化学流体动力学基础。这项研究可能为开发新型通气波形以改善水肿气道中表面活性剂功能提供了起点。