Kharge Angana Banerjee, Wu You, Perlman Carrie E
Department of Chemistry, Chemical Biology & Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey.
Department of Chemistry, Chemical Biology & Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
J Appl Physiol (1985). 2014 Sep 1;117(5):440-51. doi: 10.1152/japplphysiol.00084.2014. Epub 2014 Jun 26.
In the acute respiratory distress syndrome, plasma proteins in alveolar edema liquid are thought to inactivate lung surfactant and raise surface tension, T. However, plasma protein-surfactant interaction has been assessed only in vitro, during unphysiologically large surface area compression (%ΔA). Here, we investigate whether plasma proteins raise T in situ in the isolated rat lung under physiologic conditions. We flood alveoli with liquid that omits/includes plasma proteins. We ventilate the lung between transpulmonary pressures of 5 and 15 cmH2O to apply a near-maximal physiologic %ΔA, comparable to that of severe mechanical ventilation, or between 1 and 30 cmH2O, to apply a supraphysiologic %ΔA. We pause ventilation for 20 min and determine T at the meniscus that is present at the flooded alveolar mouth. We determine alveolar air pressure at the trachea, alveolar liquid phase pressure by servo-nulling pressure measurement, and meniscus radius by confocal microscopy, and we calculate T according to the Laplace relation. Over 60 ventilation cycles, application of maximal physiologic %ΔA to alveoli flooded with 4.6% albumin solution does not alter T; supraphysiologic %ΔA raise T, transiently, by 51 ± 4%. In separate experiments, we find that addition of exogenous surfactant to the alveolar liquid can, with two cycles of maximal physiologic %ΔA, reduce T by 29 ± 11% despite the presence of albumin. We interpret that supraphysiologic %ΔA likely collapses the interfacial surfactant monolayer, allowing albumin to raise T. With maximal physiologic %ΔA, the monolayer likely remains intact such that albumin, blocked from the interface, cannot interfere with native or exogenous surfactant activity.
在急性呼吸窘迫综合征中,肺泡水肿液中的血浆蛋白被认为会使肺表面活性物质失活并提高表面张力T。然而,血浆蛋白与表面活性物质的相互作用仅在体外、在非生理性的大表面积压缩(%ΔA)过程中进行了评估。在此,我们研究血浆蛋白在生理条件下是否会在离体大鼠肺中原位提高T。我们用不含/含有血浆蛋白的液体充盈肺泡。我们在5至15 cmH₂O的跨肺压之间对肺进行通气,以施加接近最大的生理%ΔA,这与严重机械通气时的情况相当,或者在1至30 cmH₂O之间通气,以施加超生理%ΔA。我们暂停通气20分钟,并在充盈肺泡口处存在的弯月面处测定T。我们通过伺服归零压力测量确定气管处的肺泡气压、肺泡液相压力,并通过共聚焦显微镜确定弯月面半径,然后根据拉普拉斯关系计算T。在60多个通气周期中,对用4.6%白蛋白溶液充盈的肺泡施加最大生理%ΔA不会改变T;超生理%ΔA会使T短暂升高51±4%。在单独的实验中,我们发现尽管存在白蛋白,但向肺泡液中添加外源性表面活性物质,经过两个最大生理%ΔA周期后,可使T降低29±11%。我们推断,超生理%ΔA可能会使界面表面活性物质单分子层塌陷,从而使白蛋白能够提高T。在最大生理%ΔA下,单分子层可能保持完整,使得白蛋白无法接触界面,从而不会干扰内源性或外源性表面活性物质的活性。