Suppr超能文献

有序类别相关基因表达数据的分析

Analysis of Correlated Gene Expression Data on Ordered Categories.

作者信息

Peddada Shyamal D, Harris Shawn F, Davidov Ori

机构信息

Biostatistics Branch, NIEHS, NIH, T. W. Alexander Dr. NC, 27709.

出版信息

J Indian Soc Agric Stat. 2010;64(1):45-60.

Abstract

A bootstrap based methodology is introduced for analyzing repeated measures/longitudinal microarray gene expression data over ordered categories. The proposed non-parametric procedure uses order-restricted inference to compare gene expressions among ordered experimental conditions. The null distribution for determining significance is derived by suitably bootstrapping the residuals. The procedure addresses two potential sources of correlation in the data, namely, (a) correlations among genes within a chip ("intra-chip" correlation), and (b) correlation within subject due to repeated/longitudinal measurements ("temporal" correlation). To make the procedure computationally efficient, the adaptive bootstrap methodology of Guo and Peddada (2008) is implemented such that the resulting procedure controls the false discovery rate (FDR) at the desired nominal level.

摘要

引入了一种基于自助法的方法,用于分析有序类别上的重复测量/纵向微阵列基因表达数据。所提出的非参数程序使用顺序受限推断来比较有序实验条件下的基因表达。通过对残差进行适当的自助抽样来推导用于确定显著性的零分布。该程序解决了数据中两个潜在的相关来源,即:(a)芯片内基因之间的相关性(“芯片内”相关性),以及(b)由于重复/纵向测量导致的受试者内部相关性(“时间”相关性)。为了使该程序计算高效,实施了Guo和Peddada(2008)的自适应自助法,以使所得程序在所需的名义水平上控制错误发现率(FDR)。

相似文献

2
Order-restricted inference for ordered gene expression (ORIOGEN) data under heteroscedastic variances.
Bioinformation. 2007 Apr 10;1(10):414-9. doi: 10.6026/97320630001414.
3
4
Adaptive choice of the number of bootstrap samples in large scale multiple testing.
Stat Appl Genet Mol Biol. 2008;7(1):Article13. doi: 10.2202/1544-6115.1360. Epub 2008 Mar 24.
6
Estimation of false discovery rates in multiple testing: application to gene microarray data.
Biometrics. 2003 Dec;59(4):1071-81. doi: 10.1111/j.0006-341x.2003.00123.x.
7
Analysis of Microbiome Data in the Presence of Excess Zeros.
Front Microbiol. 2017 Nov 7;8:2114. doi: 10.3389/fmicb.2017.02114. eCollection 2017.
10
The PIT-trap-A "model-free" bootstrap procedure for inference about regression models with discrete, multivariate responses.
PLoS One. 2017 Jul 24;12(7):e0181790. doi: 10.1371/journal.pone.0181790. eCollection 2017.

引用本文的文献

1
Mixed directional false discovery rate control in multiple pairwise comparisons using weighted p-values.
Biom J. 2015 Jan;57(1):144-58. doi: 10.1002/bimj.201300242. Epub 2014 Nov 20.
3
Development of gut microbiota in infants not exposed to medical interventions.
APMIS. 2011 Jan;119(1):17-35. doi: 10.1111/j.1600-0463.2010.02688.x. Epub 2010 Oct 25.

本文引用的文献

1
A Bayesian approach to efficient differential allocation for resampling-based significance testing.
BMC Bioinformatics. 2009 Jun 28;10:198. doi: 10.1186/1471-2105-10-198.
2
A longitudinal study of gene expression in healthy individuals.
BMC Med Genomics. 2009 Jun 7;2:33. doi: 10.1186/1755-8794-2-33.
4
Adaptive choice of the number of bootstrap samples in large scale multiple testing.
Stat Appl Genet Mol Biol. 2008;7(1):Article13. doi: 10.2202/1544-6115.1360. Epub 2008 Mar 24.
6
Order-restricted inference for ordered gene expression (ORIOGEN) data under heteroscedastic variances.
Bioinformation. 2007 Apr 10;1(10):414-9. doi: 10.6026/97320630001414.
7
A structural mixed model for variances in differential gene expression studies.
Genet Res. 2007 Feb;89(1):19-25. doi: 10.1017/S0016672307008646.
8
Longitudinal analysis of gene expression in porcine skeletal muscle after post-injection local injury.
Pharm Res. 2007 Aug;24(8):1480-9. doi: 10.1007/s11095-007-9266-8. Epub 2007 Mar 23.
9
maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments.
Bioinformatics. 2006 May 1;22(9):1096-102. doi: 10.1093/bioinformatics/btl056. Epub 2006 Feb 15.
10
Significance analysis of time course microarray experiments.
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12837-42. doi: 10.1073/pnas.0504609102. Epub 2005 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验