Suppr超能文献

有序类别相关基因表达数据的分析

Analysis of Correlated Gene Expression Data on Ordered Categories.

作者信息

Peddada Shyamal D, Harris Shawn F, Davidov Ori

机构信息

Biostatistics Branch, NIEHS, NIH, T. W. Alexander Dr. NC, 27709.

出版信息

J Indian Soc Agric Stat. 2010;64(1):45-60.

Abstract

A bootstrap based methodology is introduced for analyzing repeated measures/longitudinal microarray gene expression data over ordered categories. The proposed non-parametric procedure uses order-restricted inference to compare gene expressions among ordered experimental conditions. The null distribution for determining significance is derived by suitably bootstrapping the residuals. The procedure addresses two potential sources of correlation in the data, namely, (a) correlations among genes within a chip ("intra-chip" correlation), and (b) correlation within subject due to repeated/longitudinal measurements ("temporal" correlation). To make the procedure computationally efficient, the adaptive bootstrap methodology of Guo and Peddada (2008) is implemented such that the resulting procedure controls the false discovery rate (FDR) at the desired nominal level.

摘要

引入了一种基于自助法的方法,用于分析有序类别上的重复测量/纵向微阵列基因表达数据。所提出的非参数程序使用顺序受限推断来比较有序实验条件下的基因表达。通过对残差进行适当的自助抽样来推导用于确定显著性的零分布。该程序解决了数据中两个潜在的相关来源,即:(a)芯片内基因之间的相关性(“芯片内”相关性),以及(b)由于重复/纵向测量导致的受试者内部相关性(“时间”相关性)。为了使该程序计算高效,实施了Guo和Peddada(2008)的自适应自助法,以使所得程序在所需的名义水平上控制错误发现率(FDR)。

相似文献

7
Analysis of Microbiome Data in the Presence of Excess Zeros.存在大量零值情况下的微生物组数据分析。
Front Microbiol. 2017 Nov 7;8:2114. doi: 10.3389/fmicb.2017.02114. eCollection 2017.

本文引用的文献

10
Significance analysis of time course microarray experiments.时间进程微阵列实验的显著性分析
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12837-42. doi: 10.1073/pnas.0504609102. Epub 2005 Sep 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验