Simmons Susan J, Peddada Shyamal D
Department of Mathematics and Statistics, University of North Carolina Wilmington, Wilmington, NC 28403; Biostatistics Branch, NIEHS (NIH), RTP, NC 27709, USA.
Bioinformation. 2007 Apr 10;1(10):414-9. doi: 10.6026/97320630001414.
This article extends the order restricted inference approach for time-course or dose-response gene expression microarray data, introduced by Peddada and colleagues (2003) for the case when gene expression is heteroscedastic over time or dose. The new methodology uses an iterative algorithm to estimate mean expression at various times/doses when mean expression is subject to pre-defined patterns or profiles, known as order-restrictions. Simulation studies reveal that the resulting bootstrap-based methodology for gene selection maintains the false positive rate at the nominal level while competing well with ORIOGEN in terms of power. The proposed methodology is illustrated using a breast cancer cell-line data analyzed by Peddada and colleagues (2003).
本文扩展了针对时程或剂量反应基因表达微阵列数据的序贯受限推断方法,该方法由佩达达及其同事(2003年)提出,适用于基因表达随时间或剂量存在异方差的情况。新方法使用迭代算法来估计在各种时间/剂量下的平均表达,此时平均表达受预定义模式或轮廓(即序贯限制)的约束。模拟研究表明,由此产生的基于自助法的基因选择方法在保持名义水平的假阳性率的同时,在功效方面与ORIOGEN不相上下。通过佩达达及其同事(2003年)分析的乳腺癌细胞系数据对所提出的方法进行了说明。