Suppr超能文献

人口遗传学中群体遗传与选择的联合分析:我们的现状和未来发展方向?

Joint analysis of demography and selection in population genetics: where do we stand and where could we go?

机构信息

Laboratory of Evolutionary Genomics, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China.

出版信息

Mol Ecol. 2012 Jan;21(1):28-44. doi: 10.1111/j.1365-294X.2011.05308.x. Epub 2011 Oct 14.

Abstract

Teasing apart the effects of selection and demography on genetic polymorphism remains one of the major challenges in the analysis of population genomic data. The traditional approach has been to assume that demography would leave a genome-wide signature, whereas the effect of selection would be local. In the light of recent genomic surveys of sequence polymorphism, several authors have argued that this approach is questionable based on the evidence of the pervasive role of positive selection and that new approaches are needed. In the first part of this review, we give a few empirical and theoretical examples illustrating the difficulty in teasing apart the effects of selection and demography on genomic polymorphism patterns. In the second part, we review recent efforts to detect recent positive selection. Most available methods still rely on an a priori classification of sites in the genome but there are many promising new approaches. These new methods make use of the latest developments in statistics, explore aspects of the data that had been neglected hitherto or take advantage of the emerging population genomic data. A current and promising approach is based on first estimating demographic and genetic parameters, using, e.g., a likelihood or approximate Bayesian computation framework, focusing on extreme outlier regions, and then using an independent method to confirm these. Finally, especially for species where evidence of natural selection has been limited, more experimental and versatile approaches that contrast populations under varied environmental constraints might be more successful compared with species-wide genome scans in search of specific signatures.

摘要

剖析选择和人口统计学对遗传多态性的影响仍然是分析群体基因组数据的主要挑战之一。传统的方法是假设人口统计学将在全基因组范围内留下特征,而选择的影响则是局部的。鉴于最近对序列多态性的基因组调查,一些作者认为,根据积极选择普遍存在的证据,这种方法是值得怀疑的,需要新的方法。在这篇综述的第一部分,我们给出了一些经验和理论的例子,说明了在基因组多态性模式上区分选择和人口统计学影响的困难。在第二部分,我们回顾了最近检测近期正选择的努力。大多数现有的方法仍然依赖于对基因组中位点的先验分类,但有许多有前途的新方法。这些新方法利用了统计学的最新进展,探索了迄今被忽视的数据方面,或利用新兴的群体基因组数据。目前有一个很有前途的方法是首先使用似然或近似贝叶斯计算框架等方法来估计人口统计学和遗传参数,重点是极端异常值区域,然后使用独立的方法来确认这些参数。最后,特别是对于那些自然选择证据有限的物种,与在寻找特定特征的全物种基因组扫描相比,对比不同环境约束下的种群的更具实验性和多功能的方法可能会更成功。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验