Soni Vivak, Pfeifer Susanne P, Jensen Jeffrey D
Arizona State University, School of Life Sciences, Center for Evolution & Medicine.
bioRxiv. 2023 Nov 13:2023.11.11.566703. doi: 10.1101/2023.11.11.566703.
Disentangling the effects of demography and selection has remained a focal point of population genetic analysis. Knowledge about mutation and recombination is essential in this endeavour; however, despite clear evidence that both mutation and recombination rates vary across genomes, it is common practice to model both rates as fixed. In this study, we quantify how this unaccounted for rate heterogeneity may impact inference using common approaches for inferring selection (DFE-alpha, Grapes, and polyDFE) and/or demography (fastsimcoal2 and ). We demonstrate that, if not properly modelled, this heterogeneity can increase uncertainty in the estimation of demographic and selective parameters and in some scenarios may result in mis-leading inference. These results highlight the importance of quantifying the fundamental evolutionary parameters of mutation and recombination prior to utilizing population genomic data to quantify the effects of genetic drift (., as modulated by demographic history) and selection; or, at the least, that the effects of uncertainty in these parameters can and should be directly modelled in downstream inference.
解析人口统计学和选择的影响一直是群体遗传学分析的焦点。在这项工作中,关于突变和重组的知识至关重要;然而,尽管有明确证据表明突变率和重组率在基因组中各不相同,但将这两种速率都建模为固定值却是常见的做法。在本研究中,我们量化了这种未考虑到的速率异质性如何使用推断选择(DFE-alpha、Grapes和polyDFE)和/或人口统计学(fastsimcoal2)的常用方法影响推断。我们证明,如果没有正确建模,这种异质性会增加人口统计学和选择参数估计的不确定性,并且在某些情况下可能导致误导性的推断。这些结果凸显了在利用群体基因组数据量化遗传漂变(例如,由人口历史调节)和选择的影响之前,量化突变和重组的基本进化参数的重要性;或者,至少,这些参数不确定性的影响可以而且应该在下游推断中直接建模。