Suppr超能文献

利用领域知识提高定量高通量筛选曲线拟合的效果。

Exploiting domain knowledge for improved quantitative high-throughput screening curve fitting.

机构信息

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA.

出版信息

J Chem Inf Model. 2011 Nov 28;51(11):2808-20. doi: 10.1021/ci200210d. Epub 2011 Nov 1.

Abstract

Least-squares fitting of the Hill equation to quantitative high-throughput screening (qHTS) assays results in frequent unsatisfactory fits. We learn and exploit prior knowledge to improve the Hill fitting in a nonlinear regression method called domain knowledge fitter (DK-fitter). This paper formulates and solves DK-fitter for 44 public qHTS data sets. This new Hill parameter estimation technique is validated using three unbiased approaches, including a novel method that involves generating simulated samples. This paper fosters the extraction of higher quality information from screens for improved potency evaluation.

摘要

最小二乘法拟合 Hill 方程对高通量筛选 (qHTS) 结果进行定量分析时,拟合结果经常不理想。我们通过学习和利用先验知识,对非线性回归方法(称为领域知识拟合器(DK-fitter))中的 Hill 拟合进行了改进。本文针对 44 个公共 qHTS 数据集,对 DK-fitter 进行了公式化并求解。本文使用三种无偏方法(包括一种涉及生成模拟样本的新方法)对这种新的 Hill 参数估计技术进行了验证。本文促进了从屏幕中提取更高质量信息,以提高效力评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验