Institute for Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-52426 Jülich, Germany.
Microb Cell Fact. 2011 Oct 17;10:80. doi: 10.1186/1475-2859-10-80.
Rhamnolipids are potent biosurfactants with high potential for industrial applications. However, rhamnolipids are currently produced with the opportunistic pathogen Pseudomonas aeruginosa during growth on hydrophobic substrates such as plant oils. The heterologous production of rhamnolipids entails two essential advantages: Disconnecting the rhamnolipid biosynthesis from the complex quorum sensing regulation and the opportunity of avoiding pathogenic production strains, in particular P. aeruginosa. In addition, separation of rhamnolipids from fatty acids is difficult and hence costly.
Here, the metabolic engineering of a rhamnolipid producing Pseudomonas putida KT2440, a strain certified as safety strain using glucose as carbon source to avoid cumbersome product purification, is reported. Notably, P. putida KT2440 features almost no changes in growth rate and lag-phase in the presence of high concentrations of rhamnolipids (> 90 g/L) in contrast to the industrially important bacteria Bacillus subtilis, Corynebacterium glutamicum, and Escherichia coli. P. putida KT2440 expressing the rhlAB-genes from P. aeruginosa PAO1 produces mono-rhamnolipids of P. aeruginosa PAO1 type (mainly C(10):C(10)). The metabolic network was optimized in silico for rhamnolipid synthesis from glucose. In addition, a first genetic optimization, the removal of polyhydroxyalkanoate formation as competing pathway, was implemented. The final strain had production rates in the range of P. aeruginosa PAO1 at yields of about 0.15 g/g(glucose) corresponding to 32% of the theoretical optimum. What's more, rhamnolipid production was independent from biomass formation, a trait that can be exploited for high rhamnolipid production without high biomass formation.
A functional alternative to the pathogenic rhamnolipid producer P. aeruginosa was constructed and characterized. P. putida KT24C1 pVLT31_rhlAB featured the highest yield and titer reported from heterologous rhamnolipid producers with glucose as carbon source. Notably, rhamnolipid production was uncoupled from biomass formation, which allows optimal distribution of resources towards rhamnolipid synthesis. The results are discussed in the context of rational strain engineering by using the concepts of synthetic biology like chassis cells and orthogonality, thereby avoiding the complex regulatory programs of rhamnolipid production existing in the natural producer P. aeruginosa.
鼠李糖脂是一种具有高潜力的生物表面活性剂,非常适合工业应用。然而,鼠李糖脂目前是由机会性病原体铜绿假单胞菌在生长于植物油脂等疏水性基质上时产生的。鼠李糖脂的异源生产具有两个重要优势:将鼠李糖脂生物合成与复杂的群体感应调控分离,以及避免使用病原菌生产菌株,特别是铜绿假单胞菌。此外,从脂肪酸中分离鼠李糖脂既困难又昂贵。
本文报道了一种鼠李糖脂产生菌铜绿假单胞菌 KT2440 的代谢工程改造,该菌株以葡萄糖为碳源,被证明是安全菌株,可避免繁琐的产物纯化。值得注意的是,与工业上重要的细菌枯草芽孢杆菌、谷氨酸棒杆菌和大肠杆菌相比,铜绿假单胞菌 KT2440 在存在高浓度鼠李糖脂(>90g/L)时,其生长速度和迟滞期几乎没有变化。表达铜绿假单胞菌 PAO1 的 rhlAB 基因的铜绿假单胞菌 KT2440 产生铜绿假单胞菌 PAO1 型的单鼠李糖脂(主要为 C(10):C(10))。在计算机中对葡萄糖合成鼠李糖脂的代谢网络进行了优化。此外,还实施了第一次遗传优化,去除了聚羟基脂肪酸酯的形成作为竞争途径。最终的菌株在产率方面与铜绿假单胞菌 PAO1 相当,产率约为 0.15g/g(葡萄糖),相当于理论最佳值的 32%。此外,鼠李糖脂的产生与生物量的形成无关,这一特性可用于在不形成高生物量的情况下进行高鼠李糖脂生产。
构建并表征了一种功能性替代病原菌鼠李糖脂产生菌铜绿假单胞菌的菌株。以葡萄糖为碳源,与其他异源鼠李糖脂产生菌相比,铜绿假单胞菌 KT24C1 pVLT31_rhlAB 的产量和浓度最高。值得注意的是,鼠李糖脂的产生与生物量的形成脱钩,这使得资源能够最优地分配到鼠李糖脂的合成中。结果在理性菌株工程的背景下进行了讨论,使用了合成生物学的概念,如底盘细胞和正交性,从而避免了天然产生菌铜绿假单胞菌中存在的复杂的鼠李糖脂生产调控程序。