Suppr超能文献

一氧化氮对基底神经节回路的调制:帕金森病和其他运动障碍的治疗意义。

Nitric oxide modulation of the basal ganglia circuitry: therapeutic implication for Parkinson's disease and other motor disorders.

机构信息

Department of Physiology & Biochemistry, University of Malta, Malta.

出版信息

CNS Neurol Disord Drug Targets. 2011 Nov;10(7):777-91. doi: 10.2174/187152711798072329.

Abstract

Several recent studies have emphasized a crucial role for the nitrergic system in movement control and the pathophysiology of the basal ganglia (BG). These observations are supported by anatomical evidence demonstrating the presence of nitric oxide synthase (NOS) in all the basal ganglia nuclei. In fact, nitrergic terminals have been reported to make synaptic contacts with both substantia nigra dopamine-containing neurons and their terminal areas such as the striatum, the globus pallidus and the subthalamus. These brain areas contain a high expression of nitric oxide (NO)-producing neurons, with the striatum having the greatest number, together with important NO afferent input. In this paper, the distribution of NO in the BG nuclei will be described. Furthermore, evidence demonstrating the nitrergic control of BG activity will be reviewed. The new avenues that the increasing knowledge of NO in motor control has opened for exploring the pathophysiology and pharmacology of Parkinson's disease and other movement disorders will be discussed. For example, inhibition of striatal NO/guanosine monophosphate signal pathway by phosphodiesterases seems to be effective in levodopa-induced dyskinesia. However, the results of experimental studies have to be interpreted with caution given the complexities of nitrergic signalling and the limitations of animal models. Nevertheless, the NO system represents a promising pharmacological intervention for treating Parkinson's disease and related disorders.

摘要

最近的几项研究强调了氮能系统在运动控制和基底神经节(BG)病理生理学中的关键作用。这些观察结果得到了解剖学证据的支持,该证据表明所有基底神经节核中都存在一氧化氮合酶(NOS)。事实上,已经有报道称,氮能末梢与含有多巴胺的黑质神经元及其终末区域(如纹状体、苍白球和下丘脑)形成突触联系。这些脑区含有大量产生一氧化氮(NO)的神经元,其中纹状体数量最多,同时还有重要的NO 传入输入。本文将描述 BG 核中 NO 的分布。此外,还将回顾证明氮能控制 BG 活性的证据。对于探索帕金森病和其他运动障碍的病理生理学和药理学,越来越多的关于 NO 在运动控制中的知识为我们开辟了新的途径。例如,通过磷酸二酯酶抑制纹状体的 NO/鸟苷酸单磷酸信号通路似乎对左旋多巴诱导的运动障碍有效。然而,鉴于氮能信号的复杂性和动物模型的局限性,必须谨慎解释实验研究的结果。尽管如此,NO 系统代表了治疗帕金森病和相关疾病的一种有前途的药理学干预手段。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验