Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
Structure. 2011 Nov 9;19(11):1691-700. doi: 10.1016/j.str.2011.09.017. Epub 2011 Oct 13.
The maintenance of genomic stability relies on the spindle assembly checkpoint (SAC), which ensures accurate chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bioriented and attached to the mitotic spindle. BUB1 and BUBR1 kinases are central for this process and by interacting with Blinkin, link the SAC with the kinetochore, the macromolecular assembly that connects microtubules with centromeric DNA. Here, we identify the Blinkin motif critical for interaction with BUBR1, define the stoichiometry and affinity of the interaction, and present a 2.2 Å resolution crystal structure of the complex. The structure defines an unanticipated BUBR1 region responsible for the interaction and reveals a novel Blinkin motif that undergoes a disorder-to-order transition upon ligand binding. We also show that substitution of several BUBR1 residues engaged in binding Blinkin leads to defects in the SAC, thus providing the first molecular details of the recognition mechanism underlying kinetochore-SAC signaling.
基因组稳定性的维持依赖于纺锤体组装检查点(SAC),它通过延迟后期起始来确保染色体的正确分离,直到所有染色体都正确定向并连接到有丝分裂纺锤体上。BUB1 和 BUBR1 激酶对于这个过程至关重要,通过与 Blinkin 相互作用,将 SAC 与动粒连接起来,动粒是连接微管与着丝粒 DNA 的大分子组装体。在这里,我们确定了与 BUBR1 相互作用的 Blinkin 基序的关键部分,定义了相互作用的化学计量和亲和力,并呈现了复合物的 2.2 Å 分辨率晶体结构。该结构定义了一个出人意料的 BUBR1 区域,负责相互作用,并揭示了一个新的 Blinkin 基序,在配体结合时经历无序到有序的转变。我们还表明,结合 Blinkin 的几个 BUBR1 残基的取代会导致 SAC 缺陷,从而为动粒-SAC 信号转导的识别机制提供了第一个分子细节。