Department of Cellular and Integrative Physiology, Indiana University School of Medicine, VanNuys Medical Science Building Rm 308A, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
Diabetologia. 2012 Feb;55(2):457-67. doi: 10.1007/s00125-011-2334-y. Epub 2011 Oct 15.
AIMS/HYPOTHESIS: Diminished cortical filamentous actin (F-actin) has been implicated in skeletal muscle insulin resistance, yet the mechanism(s) is unknown. Here we tested the hypothesis that changes in membrane cholesterol could be a causative factor, as organised F-actin structure emanates from cholesterol-enriched raft microdomains at the plasma membrane.
Skeletal muscle samples from high-fat-fed animals and insulin-sensitive and insulin-resistant human participants were evaluated. The study also used L6 myotubes to directly determine the impact of fatty acids (FAs) on membrane/cytoskeletal variables and insulin action.
High-fat-fed insulin-resistant animals displayed elevated levels of membrane cholesterol and reduced F-actin structure compared with normal chow-fed animals. Moreover, human muscle biopsies revealed an inverse correlation between membrane cholesterol and whole-body glucose disposal. Palmitate-induced insulin-resistant myotubes displayed membrane cholesterol accrual and F-actin loss. Cholesterol lowering protected against the palmitate-induced defects, whereas characteristically measured defects in insulin signalling were not corrected. Conversely, cholesterol loading of L6 myotube membranes provoked a palmitate-like cytoskeletal/GLUT4 derangement. Mechanistically, we observed a palmitate-induced increase in O-linked glycosylation, an end-product of the hexosamine biosynthesis pathway (HBP). Consistent with HBP activity affecting the transcription of various genes, we observed an increase in Hmgcr, a gene that encodes 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. In line with increased HBP activity transcriptionally provoking a membrane cholesterol-based insulin-resistant state, HBP inhibition attenuated Hmgcr expression and prevented membrane cholesterol accrual, F-actin loss and GLUT4/glucose transport dysfunction.
CONCLUSIONS/INTERPRETATION: Our results suggest a novel cholesterolgenic-based mechanism of FA-induced membrane/cytoskeletal disorder and insulin resistance.
目的/假设:有研究表明,皮质丝状肌动蛋白(F-actin)减少与骨骼肌胰岛素抵抗有关,但具体机制尚不清楚。本研究旨在验证胆固醇变化可能是一个致病因素的假设,因为有组织的 F-actin 结构起源于质膜富含胆固醇的筏微域。
检测高脂肪喂养的动物和胰岛素敏感及胰岛素抵抗的人类参与者的骨骼肌样本。该研究还使用 L6 肌管来直接确定脂肪酸(FAs)对膜/细胞骨架变量和胰岛素作用的影响。
与正常进食的动物相比,高脂肪喂养的胰岛素抵抗动物表现出更高的膜胆固醇水平和减少的 F-actin 结构。此外,人类肌肉活检显示,膜胆固醇与全身葡萄糖处置呈负相关。棕榈酸诱导的胰岛素抵抗肌管显示出膜胆固醇积累和 F-actin 丢失。胆固醇降低可预防棕榈酸引起的缺陷,而胰岛素信号的特征性测量缺陷未得到纠正。相反,L6 肌管膜的胆固醇加载会引起类似棕榈酸的细胞骨架/GLUT4 紊乱。在机制上,我们观察到棕榈酸诱导的 O-连接糖基化增加,这是己糖胺生物合成途径(HBP)的终产物。与 HBP 活性影响各种基因的转录一致,我们观察到 Hmgcr 增加,该基因编码 3-羟-3-甲基戊二酰辅酶 A 还原酶,胆固醇合成的限速酶。与 HBP 活性增加转录导致膜胆固醇依赖性胰岛素抵抗状态一致,HBP 抑制可降低 Hmgcr 表达并防止膜胆固醇积累、F-actin 丢失和 GLUT4/葡萄糖转运功能障碍。
结论/解释:我们的研究结果表明,FA 诱导的膜/细胞骨架紊乱和胰岛素抵抗存在一种新的胆固醇生成机制。