Suppr超能文献

计算机断层扫描血管造影中冠状动脉狭窄的检测、分级和分类

Detection, grading and classification of coronary stenoses in computed tomography angiography.

作者信息

Kelm B Michael, Mittal Sushil, Zheng Yefeng, Tsymbal Alexey, Bernhardt Dominik, Vega-Higuera Fernando, Zhou S Kevin, Meer Peter, Comaniciu Dorin

机构信息

Image Analytics and Informatics, Corporate Technology, Siemens AG, Erlangen, Germany.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 3):25-32. doi: 10.1007/978-3-642-23626-6_4.

Abstract

Recently conducted clinical studies prove the utility of Coronary Computed Tomography Angiography (CCTA) as a viable alternative to invasive angiography for the detection of Coronary Artery Disease (CAD). This has lead to the development of several algorithms for automatic detection and grading of coronary stenoses. However, most of these methods focus on detecting calcified plaques only. A few methods that can also detect and grade non-calcified plaques require substantial user involvement. In this paper, we propose a fast and fully automatic system that is capable of detecting, grading and classifying coronary stenoses in CCTA caused by all types of plaques. We propose a four-step approach including a learning-based centerline verification step and a lumen cross-section estimation step using random regression forests. We show state-of-the-art performance of our method in experiments conducted on a set of 229 CCTA volumes. With an average processing time of 1.8 seconds per case after centerline extraction, our method is significantly faster than competing approaches.

摘要

最近开展的临床研究证明,冠状动脉计算机断层扫描血管造影(CCTA)作为检测冠状动脉疾病(CAD)的一种可行的侵入性血管造影替代方法是有用的。这导致了几种用于自动检测和分级冠状动脉狭窄的算法的开发。然而,这些方法大多只专注于检测钙化斑块。一些也能检测和分级非钙化斑块的方法需要大量用户参与。在本文中,我们提出了一种快速且全自动的系统,该系统能够检测、分级和分类由所有类型斑块导致的CCTA中的冠状动脉狭窄。我们提出了一种四步方法,包括基于学习的中心线验证步骤和使用随机回归森林的管腔横截面估计步骤。我们在对一组229个CCTA容积进行的实验中展示了我们方法的领先性能。在中心线提取后,我们的方法平均每个病例的处理时间为1.8秒,比竞争方法明显更快。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验