Hashimoto Light Energy Conversion Project, ERATO, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
Environ Microbiol. 2012 Jul;14(7):1646-54. doi: 10.1111/j.1462-2920.2011.02611.x. Epub 2011 Oct 18.
Methanogenesis is an essential part of the global carbon cycle and a key bioprocess for sustainable energy. Methanogenesis from organic matter is accomplished by syntrophic interactions among different species of microbes, in which interspecies electron transfer (IET) via diffusive carriers (e.g. hydrogen and formate) is known to be the bottleneck step. We report herein that the supplementation of soil microbes with (semi)conductive iron-oxide minerals creates unique interspecies interactions and facilitates methanogenesis. Methanogenic microbes were enriched from rice paddy field soil with either acetate or ethanol as a substrate in the absence or presence of (semi)conductive iron oxides (haematite or magnetite). We found that the supplementation with either of these iron oxides resulted in the acceleration of methanogenesis in terms of lag time and production rate, while the supplementation with an insulative iron oxide (ferrihydrite) did not. Clone-library analyses of 16S rRNA gene fragments PCR-amplified from the enrichment cultures revealed that the iron-oxide supplementation stimulated the growth of Geobacter spp. Furthermore, the addition of a specific inhibitor for methanogenesis suppressed the growth of Geobacter spp. These results suggest that Geobacter grew under syntrophic association with methanogens, and IET could occur via electric currents through (semi)conductive iron-oxide minerals (termed 'electric syntrophy'). Given the ubiquity of conductive minerals in nature, such energetic interactions may occur widely in soil and sediments and can be used to develop efficient bioenergy processes.
产甲烷作用是全球碳循环的重要组成部分,也是可持续能源的关键生物过程。有机物质的产甲烷作用是通过不同微生物物种之间的共生相互作用来完成的,其中种间电子转移(IET)通过扩散载体(例如氢气和甲酸盐)是已知的瓶颈步骤。我们在此报告,用(半)导性氧化铁矿物补充土壤微生物会产生独特的种间相互作用,并促进产甲烷作用。我们用乙酸盐或乙醇作为基质,从稻田土壤中富集产甲烷微生物,无论是否存在(半)导性氧化铁(赤铁矿或磁铁矿)。我们发现,这两种氧化铁的补充都能加速甲烷生成的滞后时间和产率,而绝缘氧化铁(水铁矿)的补充则没有。从富集培养物中 PCR 扩增的 16S rRNA 基因片段的克隆文库分析表明,氧化铁的补充刺激了 Geobacter spp. 的生长。此外,添加一种特定的甲烷生成抑制剂抑制了 Geobacter spp. 的生长。这些结果表明,Geobacter 与产甲烷菌共生生长,并且 IET 可以通过(半)导性氧化铁矿物中的电流发生(称为“电共生”)。鉴于导电矿物在自然界中的普遍性,这种能量相互作用可能在土壤和沉积物中广泛发生,并可用于开发高效的生物能源过程。