Suppr超能文献

开发和验证一种使用增强型行政数据预测脓毒症患者死亡率的模型。

Development and validation of a model that uses enhanced administrative data to predict mortality in patients with sepsis.

机构信息

Center for Quality of Care Research, Division of General Internal Medicine and Geriatrics, Baystate Medical Center, Springfield, MA, USA.

出版信息

Crit Care Med. 2011 Nov;39(11):2425-30. doi: 10.1097/CCM.0b013e31822572e3.

Abstract

OBJECTIVE

We aimed to determine whether a sepsis risk-adjustment model that uses only administrative data could be used when other intensive care unit risk-adjustment methods are unavailable.

DESIGN

Cohort study with development and validation cohorts.

PATIENTS

The development cohort included 166,931 patients at 309 hospitals that cared for at least 100 patients with sepsis between 2004 and 2006. The validation cohort included 357 adult sepsis patients who were enrolled in Project IMPACT, 2002-2009.

MEASUREMENTS AND MAIN RESULTS

We developed a multilevel mixed-effects logistic regression model to predict mortality at the patient level. Predictors included patient demographics (age, sex, race, insurance type), site and source of sepsis, presence of 25 individual comorbidities, treatment (within the first 2 days of hospitalization) with mechanical ventilation and/or vasopressors, and/or admission to the intensive care unit (within 2 days of hospitalization). We validated this model in 357 sepsis patients who were admitted to the intensive care unit at a single academic medical center and who had a valid Acute Physiology and Chronic Health Evaluation II score, a valid Simplified Acute Physiology Score II, and a valid Mortality Probability Model III score. Overall, 33,192 patients (19.9%) died in the hospital. In the development cohort, the predicted mortality ranged from 0.002 to 0.938 with a mean of 0.199. The model's area under the receiver operating characteristic curve was 0.78. In the validation cohort, all models had modest discriminatory ability and the areas under the receiver operating characteristic curves of all models were statistically similar (Acute Physiology and Chronic Health Evaluation II, 0.71; Simplified Acute Physiology Score II, 0.74; Mortality Probability Model III, 0.69; administrative model, 0.69; p value that the areas under the receiver operating characteristic curves are different, .35). The Hosmer-Lemeshow statistic was significant (p < .01) for Acute Physiology and Chronic Health Evaluation II, Simplified Acute Physiology Score II, and Mortality Probability Model III but was nonsignificant (p = .11) for the administrative model.

CONCLUSIONS

A sepsis mortality model using detailed administrative data has discrimination similar to and calibration superior to those of existing severity scores that require chart review. This model may be a useful alternative method of severity adjustment for benchmarking purposes or for conducting large, retrospective epidemiologic studies of sepsis patients.

摘要

目的

我们旨在确定是否可以使用仅使用管理数据的脓毒症风险调整模型,而无法使用其他重症监护病房风险调整方法。

设计

开发和验证队列的队列研究。

患者

开发队列包括 2004 年至 2006 年间在 309 家至少收治 100 名脓毒症患者的医院的 166931 名患者。验证队列包括 2002-2009 年期间在 Project IMPACT 中入组的 357 名成人脓毒症患者。

测量和主要结果

我们开发了一个多水平混合效应逻辑回归模型来预测患者水平的死亡率。预测因子包括患者人口统计学特征(年龄、性别、种族、保险类型)、脓毒症的部位和来源、存在 25 种个体合并症、机械通气和/或血管加压素的治疗(住院后 2 天内)以及/或入住重症监护病房(住院后 2 天内)。我们在一家学术医疗中心入住重症监护病房的 357 名脓毒症患者中验证了该模型,这些患者的急性生理学和慢性健康评估 II 评分、简化急性生理学评分 II 和死亡率概率模型 III 评分均有效。总体而言,33192 名患者(19.9%)在医院死亡。在开发队列中,预测死亡率范围从 0.002 到 0.938,平均为 0.199。该模型的接收者操作特征曲线下面积为 0.78。在验证队列中,所有模型均具有适度的区分能力,并且所有模型的接收者操作特征曲线下面积在统计学上均相似(急性生理学和慢性健康评估 II,0.71;简化急性生理学评分 II,0.74;死亡率概率模型 III,0.69;行政模型,0.69;p 值表示接收者操作特征曲线下面积不同,。35)。霍斯默-莱梅肖检验统计量对于急性生理学和慢性健康评估 II、简化急性生理学评分 II 和死亡率概率模型 III 显著(p<.01),但对于行政模型则不显著(p=。11)。

结论

使用详细管理数据的脓毒症死亡率模型具有与需要图表审查的现有严重程度评分相似的区分能力和优于这些评分的校准能力。该模型可能是用于基准测试目的或进行大型回顾性脓毒症患者流行病学研究的严重程度调整的有用替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验