Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires e Instituto de Química y Fisicoquímica Biológica (IQUIFIB-CONICET), Junín 956, C1113AAD, Buenos Aires, Argentina.
J Am Soc Mass Spectrom. 2012 Jan;23(1):30-42. doi: 10.1007/s13361-011-0266-x. Epub 2011 Oct 18.
Much knowledge into protein folding, ligand binding, and complex formation can be derived from the examination of the nature and size of the accessible surface area (SASA) of the polypeptide chain, a key parameter in protein science not directly measurable in an experimental fashion. To this end, an ideal chemical approach should aim at exerting solvent mimicry and achieving minimal selectivity to probe the protein surface regardless of its chemical nature. The choice of the photoreagent diazirine to fulfill these goals arises from its size comparable to water and from being a convenient source of the extremely reactive methylene carbene (:CH(2)). The ensuing methylation depends primarily on the solvent accessibility of the polypeptide chain, turning it into a valuable signal to address experimentally the measurement of SASA in proteins. The superb sensitivity and high resolution of modern mass spectrometry techniques allows us to derive a quantitative signal proportional to the extent of modification (EM) of the sample. Thus, diazirine labeling coupled to electrospray mass spectrometry (ESI-MS) detection can shed light on conformational features of the native as well as non-native states, not easily addressable by other methods. Enzymatic fragmentation of the polypeptide chain at the level of small peptides allows us to locate the covalent tag along the amino acid sequence, therefore enabling the construction of a map of solvent accessibility. Moreover, by subsequent MS/MS analysis of peptides, we demonstrate here the feasibility of attaining amino acid resolution in defining the target sites.
从多肽链可及表面积(SASA)的性质和大小的研究中,可以获得许多关于蛋白质折叠、配体结合和复合物形成的知识,这是蛋白质科学中的一个关键参数,无法以实验方式直接测量。为此,理想的化学方法应该旨在模拟溶剂,并实现最小的选择性,以探测蛋白质表面,而不考虑其化学性质。选择重氮甲烷作为光试剂来实现这些目标,是因为它的大小与水相当,并且是极其反应性的亚甲基卡宾(:CH(2))的方便来源。随后的甲基化主要取决于多肽链的溶剂可及性,这使其成为一种有价值的信号,可以通过实验来测量蛋白质中的 SASA。现代质谱技术的超高灵敏度和高分辨率使我们能够获得与样品修饰程度(EM)成正比的定量信号。因此,重氮甲烷标记与电喷雾质谱(ESI-MS)检测相结合,可以揭示天然状态和非天然状态的构象特征,这些特征不易通过其他方法解决。在小肽水平上对多肽链进行酶解,可以在氨基酸序列上定位共价标记,从而能够构建溶剂可及性图谱。此外,通过对肽进行随后的 MS/MS 分析,我们在这里证明了在确定靶位点时实现氨基酸分辨率的可行性。