Gómez Gabriela Elena, Monti José Luis E, Mundo Mariana Rocío, Delfino José María
Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB-CONICET) , Junín 956, C1113AAD Buenos Aires, Argentina.
Anal Chem. 2015 Oct 6;87(19):10080-7. doi: 10.1021/acs.analchem.5b02724. Epub 2015 Sep 30.
The solvent accessible surface area (SASA) of the polypeptide chain plays a key role in protein folding, conformational change, and interaction. This fundamental biophysical parameter is elusive in experimental measurement. Our approach to this problem relies on the reaction of the minimal photochemical reagent diazirine (DZN) with polypeptides. This reagent (i) exerts solvent mimicry because its size is comparable to water and (ii) shows scant chemical selectivity because it generates extremely reactive methylene carbene. Methylation gives rise to the EM (extent of modification) signal, which is useful for scrutinizing the conformational change triggered by Ca(2+) binding to calmodulin (CaM). The increased EM observed for the full protein is dominated by the enhanced exposure of hydrophobic area in Ca(2+)-CaM. Fragmentation allowed us to quantify the methylene incorporation at specific sites. Peptide 91-106 reveals a major reorganization around the calcium 151 binding site, resulting in local ordering and a greater exposure of the hydrophobic surface. Additionally, this technique shows a high sensitivity to probe recognition between CaM and melittin (Mel). The large decrease in EM indicates the occlusion of a significant hydrophobic area upon complexation. Protection from labeling reveals a larger involvement of the N-terminal and central regions of CaM in this interaction. Despite its smaller size, Mel's differential exposure can also be quantified. Moreover, MS/MS fragmentation realizes the goal of extending the resolution of labeled sites at the amino acid level. Overall, DZN labeling emerges as a useful footprinting method capable of shedding light on physiological conformational changes and interactions.
多肽链的溶剂可及表面积(SASA)在蛋白质折叠、构象变化及相互作用中起着关键作用。这一基本生物物理参数在实验测量中难以捉摸。我们解决此问题的方法依赖于最小光化学试剂重氮丙啶(DZN)与多肽的反应。该试剂(i)因其大小与水相当而具有溶剂模拟作用,且(ii)由于其产生极具反应性的亚甲基卡宾而表现出极少的化学选择性。甲基化产生EM(修饰程度)信号,该信号可用于仔细研究Ca(2+)与钙调蛋白(CaM)结合引发的构象变化。完整蛋白质中观察到的EM增加主要是由于Ca(2+)-CaM中疏水区域的暴露增强。片段化使我们能够量化特定位点的亚甲基掺入情况。肽91 - 106显示出围绕钙151结合位点的主要重组,导致局部有序化以及疏水表面的更大暴露。此外,该技术对CaM和蜂毒素(Mel)之间的探针识别表现出高灵敏度。EM的大幅下降表明络合时一个显著疏水区域被封闭。标记保护显示CaM的N端和中央区域在这种相互作用中参与度更高。尽管Mel尺寸较小,但其差异暴露也可被量化。此外,串联质谱(MS/MS)片段化实现了在氨基酸水平上扩展标记位点分辨率的目标。总体而言,DZN标记成为一种有用的足迹法,能够阐明生理构象变化和相互作用。