Department of Chemistry, McGill University, Montreal, Quebec, Canada.
Nat Chem. 2021 Jan;13(1):24-32. doi: 10.1038/s41557-020-00603-z. Epub 2020 Dec 21.
Oxidative cyclizations create many unique chemical structures that are characteristic of biologically active natural products. Many of these reactions are catalysed by 'non-canonical' or 'thwarted' iron oxygenases and appear to involve long-lived radicals. Mimicking these biosynthetic transformations with chemical equivalents has been a long-standing goal of synthetic chemists but the fleeting nature of radicals, particularly under oxidizing conditions, makes this challenging. Here we use redox-neutral photocatalysis to generate radicals that are likely to be involved in the biosynthesis of lignan natural products. We present the total syntheses of highly oxidized dibenzocyclooctadienes, which feature densely fused, polycyclic frameworks that originate from a common radical progenitor. We show that multiple factors control the fate of the proposed biosynthetic radicals, as they select between 5- or 11-membered ring cyclizations and a number of different terminating events. Our syntheses create new opportunities to explore the medicinal properties of these natural products, while shedding light on their biosynthetic origin.
氧化环化反应生成了许多独特的化学结构,这些结构是生物活性天然产物的特征。许多这些反应都是由“非典型”或“受阻”铁加氧酶催化的,并且似乎涉及长寿命自由基。用化学等价物模拟这些生物合成转化是合成化学家长期以来的目标,但自由基的短暂寿命,特别是在氧化条件下,使得这具有挑战性。在这里,我们使用氧化还原中性光催化来产生可能参与木质素天然产物生物合成的自由基。我们提出了高度氧化的二苯并环辛二烯的全合成方法,这些二苯并环辛二烯具有密集融合的多环骨架,源自共同的自由基前体。我们表明,多个因素控制了所提出的生物合成自由基的命运,因为它们在 5 或 11 元环环化之间以及许多不同的终止事件之间进行选择。我们的合成创造了探索这些天然产物药用特性的新机会,同时阐明了它们的生物合成起源。