Suppr超能文献

关于模型与机制之间的一些双向障碍。

On some two-way barriers between models and mechanisms.

作者信息

Uttal W R

机构信息

Department of Psychology, Arizona State University, Tempe 85287.

出版信息

Percept Psychophys. 1990 Aug;48(2):188-203. doi: 10.3758/bf03207086.

Abstract

A number of recent as well as classic ideas suggest that there are constraints and limits on the explanatory role that computational, mathematical, and neural net models of visual and other cognitive processes can play that have not been generally appreciated. These ideas come from mathematics, automata theory, chaos theory, thermodynamics, neurophysiology, and psychology. Collectively, these ideas suggest that the neural or cognitive mechanisms underlying many kinds of formal models are untestable and unverifiable. Models may be good descriptions of perceptual and other cognitive processes, but they cannot in principle be reductive explanations nor can we use them to predict behavior at the molar level from what we know of the neural primitives. This discussion is an effort to clarify the appropriate meanings of these models, not to dissuade workers from forging ahead in the modeling endeavor, which I acknowledge is progressing and is making possible our increasingly deep appreciation of plausible and interesting cognitive processes.

摘要

近期以及一些经典的观点表明,视觉及其他认知过程的计算模型、数学模型和神经网络模型在解释方面所起的作用存在一些限制,而这些限制尚未得到普遍认识。这些观点源自数学、自动机理论、混沌理论、热力学、神经生理学和心理学。总体而言,这些观点表明,许多形式模型背后的神经或认知机制是无法测试和验证的。模型可能是对感知及其他认知过程的良好描述,但从原则上讲,它们既不能进行还原性解释,我们也无法根据已知的神经原语用它们来预测整体水平的行为。本次讨论旨在阐明这些模型的恰当含义,并非劝阻研究人员在建模工作中继续前进,我承认这项工作正在取得进展,并且使我们能够越来越深入地理解合理且有趣的认知过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验