Department of Psychology, 2121 Berkeley Way West, USA.
Department of Psychology, 2121 Berkeley Way West, USA.
Dev Cogn Neurosci. 2022 Jun;55:101106. doi: 10.1016/j.dcn.2022.101106. Epub 2022 Apr 22.
During adolescence, youth venture out, explore the wider world, and are challenged to learn how to navigate novel and uncertain environments. We investigated how performance changes across adolescent development in a stochastic, volatile reversal-learning task that uniquely taxes the balance of persistence and flexibility. In a sample of 291 participants aged 8-30, we found that in the mid-teen years, adolescents outperformed both younger and older participants. We developed two independent cognitive models, based on Reinforcement learning (RL) and Bayesian inference (BI). The RL parameter for learning from negative outcomes and the BI parameters specifying participants' mental models were closest to optimal in mid-teen adolescents, suggesting a central role in adolescent cognitive processing. By contrast, persistence and noise parameters improved monotonically with age. We distilled the insights of RL and BI using principal component analysis and found that three shared components interacted to form the adolescent performance peak: adult-like behavioral quality, child-like time scales, and developmentally-unique processing of positive feedback. This research highlights adolescence as a neurodevelopmental window that can create performance advantages in volatile and uncertain environments. It also shows how detailed insights can be gleaned by using cognitive models in new ways.
在青少年时期,年轻人冒险探索更广阔的世界,并面临着学习如何驾驭新颖和不确定环境的挑战。我们研究了在一项独特地考验坚持和灵活性平衡的随机、不稳定的反转学习任务中,青少年的表现如何随着发展而变化。在一个由 291 名 8 至 30 岁参与者组成的样本中,我们发现青少年在十几岁中期的表现优于年轻和年长的参与者。我们基于强化学习 (RL) 和贝叶斯推断 (BI) 开发了两个独立的认知模型。从负面结果中学习的 RL 参数和指定参与者心理模型的 BI 参数在青少年中期最接近最佳,这表明它们在青少年认知处理中起着核心作用。相比之下,坚持性和噪声参数随着年龄的增长而单调提高。我们使用主成分分析对 RL 和 BI 的见解进行了提炼,发现三个共享的成分相互作用,形成了青少年表现的高峰:类似成人的行为质量、类似儿童的时间尺度以及对正反馈的独特发展处理。这项研究强调了青少年时期是一个神经发育窗口,可以在不稳定和不确定的环境中创造表现优势。它还展示了如何通过以新的方式使用认知模型来获得详细的见解。