University of Queensland, Brisbane, Queensland 4072, Australia.
Plant Physiol. 2011 Dec;157(4):2094-101. doi: 10.1104/pp.111.189001. Epub 2011 Oct 18.
Isomaltulose is a structural isomer of sucrose (Suc). It has been widely used as a nonmetabolized sugar in physiological studies aimed at better understanding the regulatory roles and transport of sugars in plants. It is increasingly used as a nutritional human food, with some beneficial properties including low glycemic index and acariogenicity. Cloning of genes for Suc isomerases opened the way for direct commercial production in plants. The understanding that plants lack catabolic capabilities for isomaltulose indicated a possibility of enhanced yields relative to Suc. However, this understanding was based primarily on the treatment of intact cells with exogenous isomaltulose. Here, we show that sugarcane (Saccharum interspecific hybrids), like other tested plants, does not readily import or catabolize extracellular isomaltulose. However, among intracellular enzymes, cytosolic Suc synthase (in the breakage direction) and vacuolar soluble acid invertase (SAI) substantially catabolize isomaltulose. From kinetic studies, the specificity constant of SAI for isomaltulose is about 10% of that for Suc. Activity varied against other Suc isomers, with V(max) for leucrose about 6-fold that for Suc. SAI activities from other plant species varied substantially in substrate specificity against Suc and its isomers. Therefore, in physiological studies, the blanket notion of Suc isomers including isomaltulose as nonmetabolized sugars must be discarded. For example, lysis of a few cells may result in the substantial hydrolysis of exogenous isomaltulose, with profound downstream signal effects. In plant biotechnology, different V(max) and V(max)/K(m) ratios for Suc isomers may yet be exploited, in combination with appropriate developmental expression and compartmentation, for enhanced sugar yields.
异麦芽酮糖是蔗糖(Suc)的结构异构体。它已被广泛用作生理研究中的非代谢性糖,以更好地了解糖在植物中的调节作用和运输。它越来越多地被用作营养人类食品,具有一些有益的特性,包括低血糖指数和致龋性。蔗糖异构酶基因的克隆为在植物中直接进行商业生产开辟了道路。由于植物缺乏异麦芽酮糖的分解代谢能力,因此相对于 Suc 可能会提高产量。然而,这种理解主要是基于用外源性异麦芽酮糖处理完整细胞。在这里,我们表明,甘蔗(种间杂种)与其他测试植物一样,不易进口或分解细胞外的异麦芽酮糖。然而,在细胞内酶中,细胞质蔗糖合酶(在断裂方向)和液泡可溶性酸性转化酶(SAI)大量分解异麦芽酮糖。从动力学研究来看,SAI 对异麦芽酮糖的特异性常数约为 Suc 的 10%。活性针对其他 Suc 异构体而变化,与 Suc 相比,莱苏糖的 Vmax 约为 6 倍。来自其他植物物种的 SAI 活性在针对 Suc 及其异构体的底物特异性方面差异很大。因此,在生理研究中,必须摒弃包括异麦芽酮糖在内的 Suc 异构体作为非代谢性糖的笼统概念。例如,少数细胞的裂解可能导致外源性异麦芽酮糖的大量水解,从而产生深远的下游信号效应。在植物生物技术中,不同的 Suc 异构体的 Vmax 和 Vmax/Km 比值可能会被利用,结合适当的发育表达和区室化,以提高糖产量。