Department of Bioengineering, Stanford University, Stanford, California 94305-4045, USA.
Tissue Eng Part A. 2012 Apr;18(7-8):806-15. doi: 10.1089/ten.TEA.2011.0391. Epub 2011 Dec 20.
Cell transplantation is a promising therapy for a myriad of debilitating diseases; however, current delivery protocols using direct injection result in poor cell viability. We demonstrate that during the actual cell injection process, mechanical membrane disruption results in significant acute loss of viability at clinically relevant injection rates. As a strategy to protect cells from these damaging forces, we hypothesize that cell encapsulation within hydrogels of specific mechanical properties will significantly improve viability. We use a controlled in vitro model of cell injection to demonstrate success of this acute protection strategy for a wide range of cell types including human umbilical vein endothelial cells (HUVEC), human adipose stem cells, rat mesenchymal stem cells, and mouse neural progenitor cells. Specifically, alginate hydrogels with plateau storage moduli (G') ranging from 0.33 to 58.1 Pa were studied. A compliant crosslinked alginate hydrogel (G'=29.6 Pa) yielded the highest HUVEC viability, 88.9% ± 5.0%, while Newtonian solutions (i.e., buffer only) resulted in 58.7% ± 8.1% viability. Either increasing or decreasing the hydrogel storage modulus reduced this protective effect. Further, cells within noncrosslinked alginate solutions had viabilities lower than media alone, demonstrating that the protective effects are specifically a result of mechanical gelation and not the biochemistry of alginate. Experimental and theoretical data suggest that extensional flow at the entrance of the syringe needle is the main cause of acute cell death. These results provide mechanistic insight into the role of mechanical forces during cell delivery and support the use of protective hydrogels in future clinical stem cell injection studies.
细胞移植是治疗多种衰弱性疾病的一种很有前途的疗法;然而,目前使用直接注射的输送方案会导致细胞活力很差。我们证明,在实际的细胞注射过程中,机械性的细胞膜破裂会导致在临床相关的注射速率下,细胞活力出现明显的急性丧失。作为一种保护细胞免受这些破坏性力量影响的策略,我们假设将细胞封装在具有特定机械性能的水凝胶中会显著提高细胞活力。我们使用细胞注射的受控体外模型来证明这种针对多种细胞类型(包括人脐静脉内皮细胞 (HUVEC)、人脂肪干细胞、大鼠间充质干细胞和小鼠神经祖细胞)的急性保护策略的成功。具体来说,研究了平台储能模量 (G') 范围为 0.33 至 58.1 Pa 的受控体外模型的细胞注射。顺应性交联海藻酸盐水凝胶 (G'=29.6 Pa) 产生了最高的 HUVEC 活力,为 88.9%±5.0%,而牛顿溶液(即仅缓冲液)的活力为 58.7%±8.1%。要么增加要么降低水凝胶储能模量都会降低这种保护作用。此外,非交联海藻酸盐溶液中的细胞活力低于单独的培养基,这表明保护作用是机械凝胶化的特定结果,而不是海藻酸盐的生物化学结果。实验和理论数据表明,注射器针头入口处的拉伸流是急性细胞死亡的主要原因。这些结果为细胞输送过程中机械力的作用提供了机制上的见解,并支持在未来的临床干细胞注射研究中使用保护性水凝胶。