Suppr超能文献

回复 Shera 等人的“耳蜗阻抗与功率增益误算”。美国耳鼻喉科学会杂志。

Reply to "on cochlear impedances and the miscomputation of power gain" by Shera et Al. J. Assoc. Re. Otolaryngol.

机构信息

Oregon Hearing Research Center, Department of Otolaryngology and Head and Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA.

出版信息

J Assoc Res Otolaryngol. 2011 Dec;12(6):677-80. doi: 10.1007/s10162-011-0295-y. Epub 2011 Oct 21.

Abstract

Using a scanning laser interferometer, we recently measured the volume velocity of the basilar membrane vibration in the sensitive gerbil cochlea and estimated that the cochlear power gain is ~100 at low sound pressure levels (Ren et al., Nat Commun 2:216-223, 2011a). We thank Shera et al. for recognizing the technical challenges of our experiments and appreciating the beauty of our data in their comment (Shera et al., J Assoc Res Otolaryngol (in press), 2011). These authors argue that our analysis is inappropriate, invalidating our conclusion; moreover, they suggest that our finding of a power gain of >1 could arise from a passive structure or cochlea. While our analysis and interpretation remain to be verified, they are justified according to commonly accepted assumptions and theories in cochlear mechanics. Here, we also show that the mathematical demonstration of a power gain of >1 in a passive cochlea by Shera et al. is inconsistent with our data, which show that the volume velocity and power gain decrease and become <1 as the sound level increases.

摘要

我们最近使用扫描激光干涉仪测量了敏感沙鼠耳蜗基底膜振动的体积速度,并估计在低声压水平下,耳蜗的功率增益约为 100(Ren 等人,Nat Commun 2:216-223,2011a)。我们感谢 Shera 等人承认我们实验的技术挑战,并在他们的评论中欣赏我们数据的美妙之处(Shera 等人,J Assoc Res Otolaryngol(即将出版),2011)。这些作者认为我们的分析不恰当,使我们的结论无效;此外,他们还提出,我们发现的>1 的功率增益可能来自于被动结构或耳蜗。虽然我们的分析和解释仍有待验证,但根据耳蜗力学中普遍接受的假设和理论,它们是合理的。在这里,我们还表明,Shera 等人通过数学证明被动耳蜗的功率增益>1 与我们的数据不一致,我们的数据表明,随着声级的增加,体积速度和功率增益减小并变为<1。

相似文献

2
On cochlear impedances and the miscomputation of power gain.关于耳蜗阻抗和功率增益的误算。
J Assoc Res Otolaryngol. 2011 Dec;12(6):671-6. doi: 10.1007/s10162-011-0287-y. Epub 2011 Sep 27.
4
Loud sound-induced changes in cochlear mechanics.高声诱导的耳蜗力学变化。
J Neurophysiol. 2002 Nov;88(5):2341-8. doi: 10.1152/jn.00192.2002.
6
Consequences of Location-Dependent Organ of Corti Micro-Mechanics.位置依赖性柯蒂氏器微力学的后果
PLoS One. 2015 Aug 28;10(8):e0133284. doi: 10.1371/journal.pone.0133284. eCollection 2015.

本文引用的文献

1
On cochlear impedances and the miscomputation of power gain.关于耳蜗阻抗和功率增益的误算。
J Assoc Res Otolaryngol. 2011 Dec;12(6):671-6. doi: 10.1007/s10162-011-0287-y. Epub 2011 Sep 27.
2
Localization of the cochlear amplifier in living sensitive ears.在活体敏感耳朵中定位耳蜗放大器。
PLoS One. 2011;6(5):e20149. doi: 10.1371/journal.pone.0020149. Epub 2011 May 23.
4
Supporting evidence for reverse cochlear traveling waves.耳蜗逆行行波的支持证据。
J Acoust Soc Am. 2008 Jan;123(1):222-40. doi: 10.1121/1.2816566.
5
A NOTE ON RECENT DEVELOPMENTS IN AUDITORY THEORY.关于听觉理论近期发展的一则笔记。
Proc Natl Acad Sci U S A. 1954 Jun;40(6):508-12. doi: 10.1073/pnas.40.6.508.
6
Harmonic distortion in intracochlear pressure and its analysis to explore the cochlear amplifier.
J Acoust Soc Am. 2004 Mar;115(3):1230-41. doi: 10.1121/1.1645611.
8
Longitudinal pattern of basilar membrane vibration in the sensitive cochlea.敏感耳蜗中基底膜振动的纵向模式。
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17101-6. doi: 10.1073/pnas.262663699. Epub 2002 Dec 2.
10
Mechanics of the mammalian cochlea.哺乳动物耳蜗的力学原理。
Physiol Rev. 2001 Jul;81(3):1305-52. doi: 10.1152/physrev.2001.81.3.1305.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验