Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
Dev Biol. 2011 Dec 15;360(2):329-42. doi: 10.1016/j.ydbio.2011.09.027. Epub 2011 Oct 8.
Prostatic branching morphogenesis is an intricate event requiring precise temporal and spatial integration of numerous hormonal and growth factor-regulated inputs, yet relatively little is known about the downstream signaling pathways that orchestrate this process. In this study, we use a novel mesenchyme-free embryonic prostate culture system, newly available mTOR inhibitors and a conditional PTEN loss-of-function model to investigate the role of the interconnected PI3K and mTOR signaling pathways in prostatic organogenesis. We demonstrate that PI3K levels and PI3K/mTOR activity are robustly induced by androgen during murine prostatic development and that PI3K/mTOR signaling is necessary for prostatic epithelial bud invasion of surrounding mesenchyme. To elucidate the cellular mechanism by which PI3K/mTOR signaling regulates prostatic branching, we show that PI3K/mTOR inhibition does not significantly alter epithelial proliferation or apoptosis, but rather decreases the efficiency and speed with which the developing prostatic epithelial cells migrate. Using mTOR kinase inhibitors to tease out the independent effects of mTOR signaling downstream of PI3K, we find that simultaneous inhibition of mTORC1 and mTORC2 activity attenuates prostatic branching and is sufficient to phenocopy combined PI3K/mTOR inhibition. Surprisingly, however, mTORC1 inhibition alone has the reverse effect, increasing the number and length of prostatic branches. Finally, simultaneous activation of PI3K and downstream mTORC1/C2 via epithelial PTEN loss-of-function also results in decreased budding reversible by mTORC1 inhibition, suggesting that the effect of mTORC1 on branching is not primarily mediated by negative feedback on PI3K/mTORC2 signaling. Taken together, our data point to an important role for PI3K/mTOR signaling in prostatic epithelial invasion and migration and implicates the balance of PI3K and downstream mTORC1/C2 activity as a critical regulator of prostatic epithelial morphogenesis.
前列腺分支形态发生是一个复杂的事件,需要众多激素和生长因子调节输入的精确时空整合,但相对较少了解协调这个过程的下游信号通路。在这项研究中,我们使用了一种新型无间质胚胎前列腺培养系统、新的可用 mTOR 抑制剂和条件性 PTEN 功能丧失模型,来研究相互关联的 PI3K 和 mTOR 信号通路在前列腺发生中的作用。我们证明雄激素在小鼠前列腺发育过程中强烈诱导 PI3K 水平和 PI3K/mTOR 活性,并且 PI3K/mTOR 信号对于前列腺上皮芽突入侵周围间质是必要的。为了阐明 PI3K/mTOR 信号调节前列腺分支的细胞机制,我们表明 PI3K/mTOR 抑制不会显著改变上皮细胞的增殖或凋亡,但会降低发育中的前列腺上皮细胞迁移的效率和速度。使用 mTOR 激酶抑制剂来梳理 PI3K 下游 mTOR 信号的独立作用,我们发现同时抑制 mTORC1 和 mTORC2 活性会减弱前列腺分支,足以模拟联合 PI3K/mTOR 抑制。然而,令人惊讶的是,mTORC1 抑制单独具有相反的效果,增加前列腺分支的数量和长度。最后,通过上皮细胞 PTEN 功能丧失同时激活 PI3K 和下游 mTORC1/C2 也会导致芽突减少,通过 mTORC1 抑制可逆转,这表明 mTORC1 对分支的影响不是主要通过对 PI3K/mTORC2 信号的负反馈介导的。总之,我们的数据表明 PI3K/mTOR 信号在前列腺上皮细胞侵袭和迁移中起着重要作用,并暗示 PI3K 和下游 mTORC1/C2 活性的平衡是前列腺上皮形态发生的关键调节剂。