Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.
J Neurosci. 2011 Oct 19;31(42):15113-27. doi: 10.1523/JNEUROSCI.3432-11.2011.
New neurons are continuously generated in the subgranular zone of the adult hippocampus and, once sufficiently mature, are thought to integrate into hippocampal memory circuits. However, whether they play an essential role in subsequent memory expression is not known. Previous studies have shown that suppression of adult neurogenesis often (but not always) impairs subsequent hippocampus-dependent learning (i.e., produces anterograde effects). A major challenge for these studies is that these new neurons represent only a small subpopulation of all dentate granule cells, and so there is large potential for either partial or complete compensation by granule cells generated earlier on during development. A potentially more powerful approach to investigate this question would be to ablate adult-generated neurons after they have already become part of a memory trace (i.e., retrograde effects). Here we developed a diphtheria toxin-based strategy in mice that allowed us to selectively ablate a population of predominantly mature, adult-generated neurons either before or after learning, without affecting ongoing neurogenesis. Removal of these neurons before learning did not prevent the formation of new contextual fear or water maze memories. In contrast, removal of an equivalent population after learning degraded existing contextual fear and water maze memories, without affecting nonhippocampal memory. Ablation of these adult-generated neurons even 1 month after learning produced equivalent memory degradation in the water maze. These retrograde effects suggest that adult-generated neurons form a critical and enduring component of hippocampal memory traces.
新的神经元不断在成年海马体的颗粒下区生成,一旦成熟,它们被认为会整合到海马体的记忆回路中。然而,它们是否在随后的记忆表达中发挥重要作用尚不清楚。先前的研究表明,成年神经发生的抑制通常(但并非总是)会损害随后的海马体依赖型学习(即产生顺行效应)。这些研究面临的一个主要挑战是,这些新神经元仅代表所有颗粒细胞中的一小部分亚群,因此存在颗粒细胞早期产生的部分或完全代偿的巨大潜力。一种更有力的方法是在新神经元已经成为记忆痕迹的一部分后(即逆行效应)对其进行消融。在这里,我们在小鼠中开发了一种基于白喉毒素的策略,使我们能够在学习之前或之后选择性地消融一群主要是成熟的、成年生成的神经元,而不影响正在进行的神经发生。在学习之前去除这些神经元不会阻止新的情境恐惧或水迷宫记忆的形成。相比之下,在学习后去除相同数量的神经元会降低现有的情境恐惧和水迷宫记忆,而不影响非海马体记忆。即使在学习后 1 个月,这些成年生成的神经元的消融也会在水迷宫中产生相同的记忆退化。这些逆行效应表明,成年生成的神经元形成了海马体记忆痕迹的关键和持久组成部分。