Institut des Sciences de l'Evolution (UM2-CNRS), Université Montpellier 2, Montpellier, France.
Mol Biol Evol. 2012 Mar;29(3):957-73. doi: 10.1093/molbev/msr262. Epub 2011 Oct 19.
Likelihood-based methods of inference of population parameters from genetic data in structured populations have been implemented but still little tested in large networks of populations. In this work, a previous software implementation of inference in linear habitats is extended to two-dimensional habitats, and the coverage properties of confidence intervals are analyzed in both cases. Both standard likelihood and an efficient approximation are considered. The effects of misspecification of mutation model and dispersal distribution, and of spatial binning of samples, are considered. In the absence of model misspecification, the estimators have low bias, low mean square error, and the coverage properties of confidence intervals are consistent with theoretical expectations. Inferences of dispersal parameters and of the mutation rate are sensitive to misspecification or to approximations inherent to the coalescent algorithms used. In particular, coalescent approximations are not appropriate to infer the shape of the dispersal distribution. However, inferences of the neighborhood parameter (or of the product of population density and mean square dispersal rate) are generally robust with respect to complicating factors, such as misspecification of the mutation process and of the shape of the dispersal distribution, and with respect to spatial binning of samples. Likelihood inferences appear feasible in moderately sized networks of populations (up to 400 populations in this work), and they are more efficient than previous moment-based spatial regression method in realistic conditions.
基于似然的方法已经被用于从结构种群的遗传数据中推断种群参数,但在大规模种群网络中仍然很少得到测试。在这项工作中,先前在线性生境中进行推断的软件实现被扩展到二维生境,并在这两种情况下分析了置信区间的覆盖性质。同时考虑了标准似然和有效逼近。还考虑了突变模型和扩散分布的指定不当以及样本的空间分箱的影响。在没有模型指定不当的情况下,估计量具有低偏差、低均方误差,并且置信区间的覆盖性质与理论预期一致。扩散参数和突变率的推断对合并算法使用的模型指定不当或固有逼近很敏感。特别是,合并逼近不适用于推断扩散分布的形状。然而,对于复杂因素(例如突变过程和扩散分布的形状的指定不当)以及对于样本的空间分箱,邻域参数(或种群密度和均方扩散率的乘积)的推断通常是稳健的。在中等规模的种群网络(在这项工作中最多可达 400 个种群)中,似然推断似乎是可行的,并且在实际条件下比以前基于矩的空间回归方法更有效。