Suppr超能文献

基于微卫星数据推断种群数量收缩的最大似然法。

Maximum-likelihood inference of population size contractions from microsatellite data.

机构信息

INRA, UMR 1062 CBGP (INRA-IRD-CIRAD-Montpellier Supagro), Montpellier, France Muséum National d'Histoire Naturelle, CNRS, UMR OSEB, Paris, France Institut de Biologie Computationnelle, Montpellier, France

INRA, UMR 1062 CBGP (INRA-IRD-CIRAD-Montpellier Supagro), Montpellier, France Institut de Biologie Computationnelle, Montpellier, France Université Montpellier 2, CNRS, UMR I3M, Montpellier, France.

出版信息

Mol Biol Evol. 2014 Oct;31(10):2805-23. doi: 10.1093/molbev/msu212. Epub 2014 Jul 11.

Abstract

Understanding the demographic history of populations and species is a central issue in evolutionary biology and molecular ecology. In this work, we develop a maximum-likelihood method for the inference of past changes in population size from microsatellite allelic data. Our method is based on importance sampling of gene genealogies, extended for new mutation models, notably the generalized stepwise mutation model (GSM). Using simulations, we test its performance to detect and characterize past reductions in population size. First, we test the estimation precision and confidence intervals coverage properties under ideal conditions, then we compare the accuracy of the estimation with another available method (MSVAR) and we finally test its robustness to misspecification of the mutational model and population structure. We show that our method is very competitive compared with alternative ones. Moreover, our implementation of a GSM allows more accurate analysis of microsatellite data, as we show that the violations of a single step mutation assumption induce very high bias toward false contraction detection rates. However, our simulation tests also showed some limits, which most importantly are large computation times for strong disequilibrium scenarios and a strong influence of some form of unaccounted population structure. This inference method is available in the latest implementation of the MIGRAINE software package.

摘要

理解人口和物种的人口历史是进化生物学和分子生态学的核心问题。在这项工作中,我们开发了一种从微卫星等位基因数据推断过去种群大小变化的最大似然方法。我们的方法基于基因谱系的重要性抽样,扩展到新的突变模型,特别是广义逐步突变模型(GSM)。我们使用模拟来测试其检测和表征过去种群大小减少的性能。首先,我们在理想条件下测试估计精度和置信区间覆盖率特性,然后比较与另一种可用方法(MSVAR)的估计准确性,最后测试其对突变模型和种群结构指定不正确的稳健性。我们表明,与替代方法相比,我们的方法非常有竞争力。此外,我们对 GSM 的实现允许更准确地分析微卫星数据,因为我们表明违反单个步骤突变假设会导致错误收缩检测率的非常高的偏差。然而,我们的模拟测试也显示出一些限制,最重要的是在强不平衡情况下计算时间长,以及某种形式的未被考虑的种群结构的强烈影响。这种推断方法可在最新的 MIGRAINE 软件包实现中使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验