Suppr超能文献

甲状腺激素具有神经保护作用的分子基础。

Molecular basis for certain neuroprotective effects of thyroid hormone.

机构信息

Ordway Signal Transduction Albany, NY, USA.

出版信息

Front Mol Neurosci. 2011 Oct 14;4:29. doi: 10.3389/fnmol.2011.00029. eCollection 2011.

Abstract

The pathophysiology of brain damage that is common to ischemia-reperfusion injury and brain trauma include disodered neuronal and glial cell energetics, intracellular acidosis, calcium toxicity, extracellular excitotoxic glutamate accumulation, and dysfunction of the cytoskeleton and endoplasmic reticulum. The principal thyroid hormones, 3,5,3'-triiodo-l-thyronine (T(3)) and l-thyroxine (T(4)), have non-genomic and genomic actions that are relevant to repair of certain features of the pathophysiology of brain damage. The hormone can non-genomically repair intracellular H(+) accumulation by stimulation of the Na(+)/H(+) exchanger and can support desirably low Ca(2+) by activation of plasma membrane Ca(2+)-ATPase. Thyroid hormone non-genomically stimulates astrocyte glutamate uptake, an action that protects both glial cells and neurons. The hormone supports the integrity of the microfilament cytoskeleton by its effect on actin. Several proteins linked to thyroid hormone action are also neuroprotective. For example, the hormone stimulates expression of the seladin-1 gene whose gene product is anti-apoptotic and is potentially protective in the setting of neurodegeneration. Transthyretin (TTR) is a serum transport protein for T(4) that is important to blood-brain barrier transfer of the hormone and TTR also has been found to be neuroprotective in the setting of ischemia. Finally, the interesting thyronamine derivatives of T(4) have been shown to protect against ischemic brain damage through their ability to induce hypothermia in the intact organism. Thus, thyroid hormone or hormone derivatives have experimental promise as neuroprotective agents.

摘要

脑损伤的病理生理学常见于缺血再灌注损伤和脑外伤,包括神经元和神经胶质细胞能量代谢紊乱、细胞内酸中毒、钙毒性、细胞外兴奋性谷氨酸积累以及细胞骨架和内质网功能障碍。主要的甲状腺激素,3,5,3'-三碘-L-甲状腺原氨酸(T(3))和 L-甲状腺素(T(4)),具有非基因组和基因组作用,与脑损伤病理生理学某些特征的修复有关。该激素可通过刺激 Na(+)/H(+)交换器非基因组修复细胞内 H(+)积累,并通过激活质膜 Ca(2+)-ATP 酶来支持理想的低 Ca(2+)。甲状腺激素非基因组地刺激星形胶质细胞摄取谷氨酸,从而保护神经胶质细胞和神经元。该激素通过对肌动蛋白的作用来支持微丝细胞骨架的完整性。与甲状腺激素作用相关的几种蛋白质也具有神经保护作用。例如,该激素刺激 seladin-1 基因的表达,其产物具有抗凋亡作用,在神经退行性变的情况下可能具有保护作用。转甲状腺素(TTR)是 T(4)的血清转运蛋白,对激素的血脑屏障转运很重要,并且在缺血情况下也发现 TTR 具有神经保护作用。最后,T(4)的有趣的甲状腺素胺衍生物通过诱导完整生物体体温降低的能力来保护免受缺血性脑损伤。因此,甲状腺激素或激素衍生物作为神经保护剂具有实验前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b236/3193027/fdfc2ca4f5f6/fnmol-04-00029-g001.jpg

相似文献

1
Molecular basis for certain neuroprotective effects of thyroid hormone.
Front Mol Neurosci. 2011 Oct 14;4:29. doi: 10.3389/fnmol.2011.00029. eCollection 2011.
2
Molecular aspects of thyroid hormone actions.
Endocr Rev. 2010 Apr;31(2):139-70. doi: 10.1210/er.2009-0007. Epub 2010 Jan 5.
3
Mechanisms of nongenomic actions of thyroid hormone.
Front Neuroendocrinol. 2008 May;29(2):211-8. doi: 10.1016/j.yfrne.2007.09.003. Epub 2007 Oct 5.
4
Thyroid Hormones and Derivatives: Endogenous Thyroid Hormones and Their Targets.
Methods Mol Biol. 2018;1801:85-104. doi: 10.1007/978-1-4939-7902-8_9.
6
Thyroid Hormones in the Brain and Their Impact in Recovery Mechanisms After Stroke.
Front Neurol. 2019 Oct 18;10:1103. doi: 10.3389/fneur.2019.01103. eCollection 2019.

引用本文的文献

2
What is thyroid function in your just-diagnosed cancer patient?
Front Endocrinol (Lausanne). 2023 Feb 17;14:1109528. doi: 10.3389/fendo.2023.1109528. eCollection 2023.
3
Preclinical evaluation of triiodothyronine nanoparticles as a novel therapeutic intervention for resuscitation from cardiac arrest.
Resuscitation. 2023 May;186:109735. doi: 10.1016/j.resuscitation.2023.109735. Epub 2023 Feb 16.
7
Cerebral Ischemic Postconditioning Plays a Neuroprotective Role through Regulation of Central and Peripheral Glutamate.
Biomed Res Int. 2018 Jul 19;2018:6316059. doi: 10.1155/2018/6316059. eCollection 2018.
8
Prognostic value of thyroid hormones in acute ischemic stroke - a meta analysis.
Sci Rep. 2017 Nov 24;7(1):16256. doi: 10.1038/s41598-017-16564-2.
10

本文引用的文献

1
Favorable functional outcomes in acute ischemic stroke patients with subclinical hypothyroidism.
Neurology. 2011 Jul 26;77(4):349-54. doi: 10.1212/WNL.0b013e3182267ba0. Epub 2011 Jun 29.
3
CSF transthyretin neuroprotection in a mouse model of brain ischemia.
J Neurochem. 2010 Dec;115(6):1434-44. doi: 10.1111/j.1471-4159.2010.07047.x. Epub 2010 Nov 11.
4
Thyronamines--past, present, and future.
Endocr Rev. 2011 Feb;32(1):64-80. doi: 10.1210/er.2009-0040. Epub 2010 Sep 29.
5
Membrane receptor for thyroid hormone: physiologic and pharmacologic implications.
Annu Rev Pharmacol Toxicol. 2011;51:99-115. doi: 10.1146/annurev-pharmtox-010510-100512.
6
Essential molecular determinants for thyroid hormone transport and first structural implications for monocarboxylate transporter 8.
J Biol Chem. 2010 Sep 3;285(36):28054-63. doi: 10.1074/jbc.M110.129577. Epub 2010 Jul 13.
8
Molecular aspects of thyroid hormone actions.
Endocr Rev. 2010 Apr;31(2):139-70. doi: 10.1210/er.2009-0007. Epub 2010 Jan 5.
10
The mechanisms of brain ischemic insult and potential protective interventions.
Neurosci Bull. 2009 Jun;25(3):139-52. doi: 10.1007/s12264-009-0104-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验