Suppr超能文献

独立的输入调节依赖于磷酸化的和非依赖于磷酸化的 VI 型分泌的激活。

Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation.

机构信息

Department of Microbiology, University of Washington, Seattle, WA 98195, USA.

出版信息

Mol Microbiol. 2011 Dec;82(5):1277-90. doi: 10.1111/j.1365-2958.2011.07889.x. Epub 2011 Nov 4.

Abstract

Productive intercellular delivery of cargo by secretory systems requires exquisite temporal and spatial choreography. Our laboratory has demonstrated that the haemolysin co-regulated secretion island I (HSI-I)-encoded type VI secretion system (H1-T6SS) of Pseudomonas aeruginosa transfers effector proteins to other bacterial cells. The activity of these effectors requires cell contact-dependent delivery by the secretion apparatus, and thus their export is highly repressed under planktonic growth conditions. Here we define regulatory pathways that orchestrate efficient secretion by this system. We identified a T6S-associated protein, TagF, as a posttranslational repressor of the H1-T6SS. Strains activated by TagF derepression or stimulated through a previously identified threonine phosphorylation pathway (TPP) share the property of secretory ATPase recruitment to the T6S apparatus, yet display different effector output levels and genetic requirements for their export. We also found that these two pathways respond to distinct stimuli; we identified surface growth as a physiological cue that activates the H1-T6SS exclusively through the TPP. Coordination of posttranslational triggering with cell contact-promoting growth conditions provides a mechanism for the T6SS to avoid wasteful release of effectors.

摘要

分泌系统通过细胞间的有效物质传递需要精确的时空协调。我们的实验室已经证明,铜绿假单胞菌的溶血素共调节分泌岛 I(HSI-I)编码的 VI 型分泌系统(H1-T6SS)将效应蛋白转移到其他细菌细胞中。这些效应物的活性需要通过分泌装置进行细胞接触依赖性传递,因此在浮游生长条件下,它们的输出受到高度抑制。在这里,我们定义了协调该系统有效分泌的调控途径。我们鉴定了一种 T6S 相关蛋白 TagF,它是 H1-T6SS 的一种翻译后抑制剂。通过 TagF 去抑制或通过先前鉴定的苏氨酸磷酸化途径(TPP)刺激而激活的菌株具有将分泌 ATP 酶募集到 T6S 装置的特性,但表现出不同的效应物输出水平和遗传要求。我们还发现这两种途径对不同的刺激有反应;我们发现表面生长是一种生理信号,它通过 TPP 专门激活 H1-T6SS。将翻译后触发与促进细胞接触的生长条件相协调,为 T6SS 提供了一种避免浪费释放效应物的机制。

相似文献

1
Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation.
Mol Microbiol. 2011 Dec;82(5):1277-90. doi: 10.1111/j.1365-2958.2011.07889.x. Epub 2011 Nov 4.
2
TagF-mediated repression of bacterial type VI secretion systems involves a direct interaction with the cytoplasmic protein Fha.
J Biol Chem. 2018 Jun 8;293(23):8829-8842. doi: 10.1074/jbc.RA117.001618. Epub 2018 Mar 29.
3
Genetically distinct pathways guide effector export through the type VI secretion system.
Mol Microbiol. 2014 May;92(3):529-42. doi: 10.1111/mmi.12571. Epub 2014 Mar 28.
4
A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria.
Cell Host Microbe. 2010 Jan 21;7(1):25-37. doi: 10.1016/j.chom.2009.12.007.
5
TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa.
Mol Microbiol. 2009 Jun;72(5):1111-25. doi: 10.1111/j.1365-2958.2009.06701.x. Epub 2009 Apr 21.
6
An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa.
Environ Microbiol. 2013 Feb;15(2):471-86. doi: 10.1111/j.1462-2920.2012.02816.x. Epub 2012 Jul 6.
8
Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa.
Nat Cell Biol. 2007 Jul;9(7):797-803. doi: 10.1038/ncb1605. Epub 2007 Jun 10.
9
The T6SS-VgrG1b spike is topped by a PAAR protein eliciting DNA damage to bacterial competitors.
Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):12519-12524. doi: 10.1073/pnas.1814181115. Epub 2018 Nov 19.
10
Composition, function, and regulation of T6SS in Pseudomonas aeruginosa.
Microbiol Res. 2015 Mar;172:19-25. doi: 10.1016/j.micres.2015.01.004. Epub 2015 Jan 7.

引用本文的文献

2
Initiation of H1-T6SS dueling between .
mBio. 2024 Aug 14;15(8):e0035524. doi: 10.1128/mbio.00355-24. Epub 2024 Jul 11.
4
Killing in the name of: T6SS structure and effector diversity.
Microbiology (Reading). 2023 Jul;169(7). doi: 10.1099/mic.0.001367.
6
The Anti-Listeria Activity of Isolated from the Horticultural Environment in New Zealand.
Pathogens. 2023 Feb 19;12(2):349. doi: 10.3390/pathogens12020349.
7
Transcriptional organization and regulation of the K1 type VI secretion system gene cluster.
Microbiology (Reading). 2023 Jan;169(1). doi: 10.1099/mic.0.001295.
8
Prevalence and diversity of type VI secretion systems in a model beneficial symbiosis.
Front Microbiol. 2022 Sep 14;13:988044. doi: 10.3389/fmicb.2022.988044. eCollection 2022.
10
Subcellular localization of Type VI secretion system assembly in response to cell-cell contact.
EMBO J. 2022 Jul 4;41(13):e108595. doi: 10.15252/embj.2021108595. Epub 2022 May 30.

本文引用的文献

1
Structure and functions of profilins.
Biophys Rev. 2009 Jul;1(2):71-81. doi: 10.1007/s12551-009-0010-y. Epub 2009 Jun 4.
2
The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling.
Environ Microbiol. 2011 Dec;13(12):3128-38. doi: 10.1111/j.1462-2920.2011.02595.x. Epub 2011 Sep 29.
3
The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors.
J Bacteriol. 2011 Nov;193(21):6057-69. doi: 10.1128/JB.05671-11. Epub 2011 Sep 2.
4
Pseudomonas aeruginosa tssC1 links type VI secretion and biofilm-specific antibiotic resistance.
J Bacteriol. 2011 Oct;193(19):5510-3. doi: 10.1128/JB.00268-11. Epub 2011 Jul 22.
5
Type VI secretion delivers bacteriolytic effectors to target cells.
Nature. 2011 Jul 20;475(7356):343-7. doi: 10.1038/nature10244.
7
Anchoring the type VI secretion system to the peptidoglycan: TssL, TagL, TagP... what else?
Virulence. 2010 Nov-Dec;1(6):535-40. doi: 10.4161/viru.1.6.13732. Epub 2010 Nov 1.
8
The Vibrio cholerae type VI secretion system displays antimicrobial properties.
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19520-4. doi: 10.1073/pnas.1012931107. Epub 2010 Oct 25.
9
What is type VI secretion doing in all those bugs?
Trends Microbiol. 2010 Dec;18(12):531-7. doi: 10.1016/j.tim.2010.09.001. Epub 2010 Oct 18.
10
Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions.
PLoS Pathog. 2010 Aug 26;6(8):e1001068. doi: 10.1371/journal.ppat.1001068.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验