Laboratory for Memory and Learning, RIKEN Brain Science Institute, Wako-shi, 351-0198 Saitama, Japan.
Biomaterials. 2012 Jan;33(2):545-55. doi: 10.1016/j.biomaterials.2011.09.093. Epub 2011 Oct 20.
Scaffold design plays a crucial role in developing graft-based regenerative strategies, especially when intended to be used in a highly ordered nerve tissue. Here we describe a hybrid matrix approach, which combines the structural properties of collagen (type I) with the epitope-presenting ability of peptide amphiphile (PA) nanofibers. Self-assembly of PA and collagen molecules results in a nanofibrous scaffold with homogeneous fiber diameter of 20-30 nm, where the number of laminin epitopes IKVAV and YIGSR can be varied by changing the PA concentrations over a broad range of 0.125-2 mg/ml. Granule cells (GC) and Purkinje cells (PC), two major neuronal subtypes of cerebellar cortex, demonstrate distinct response to this change of epitope concentration. On IKVAV hybrid constructs, GC density increases three-fold compared with the control collagen substrate at a PA concentration of ≥0.25 mg/ml, while PC density reaches a maximum (five-fold vs. control) at 0.25 mg/ml of PA and rapidly decreases at higher PA concentrations. In addition, adjustment of the epitope number allowed us to achieve fine control over PC dendrite and axon growth. Due to the ability to modulate neuron survival and maturation by easy manipulation of epitope density, our design offers a versatile test bed to study the extracellular matrix (ECM) contribution in neuron development and the design of optimal neuronal scaffold biomaterials.
支架设计在开发基于移植物的再生策略中起着至关重要的作用,特别是当旨在用于高度有序的神经组织时。在这里,我们描述了一种混合基质方法,该方法结合了胶原蛋白(I 型)的结构特性和肽两亲物(PA)纳米纤维的表位呈现能力。PA 和胶原蛋白分子的自组装导致具有均匀纤维直径为 20-30nm 的纳米纤维支架,其中层粘连蛋白表位 IKVAV 和 YIGSR 的数量可以通过在 0.125-2mg/ml 的宽范围内改变 PA 浓度来改变。颗粒细胞(GC)和浦肯野细胞(PC)是小脑皮层的两种主要神经元亚型,对这种表位浓度变化表现出不同的反应。在 IKVAV 杂化结构上,与对照胶原蛋白基质相比,PA 浓度≥0.25mg/ml 时 GC 密度增加三倍,而 PA 浓度为 0.25mg/ml 时 PC 密度达到最大值(五倍于对照),并在较高 PA 浓度下迅速下降。此外,通过对表位数量的调整,我们能够实现对 PC 树突和轴突生长的精细控制。由于能够通过简单地操纵表位密度来调节神经元的存活和成熟,我们的设计提供了一个多功能的测试平台,用于研究细胞外基质(ECM)在神经元发育中的贡献和最佳神经元支架生物材料的设计。