Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL 60611, USA.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3293-8. doi: 10.1073/pnas.0906501107. Epub 2010 Feb 1.
Molecular and supramolecular design of bioactive biomaterials could have a significant impact on regenerative medicine. Ideal regenerative therapies should be minimally invasive, and thus the notion of self-assembling biomaterials programmed to transform from injectable liquids to solid bioactive structures in tissue is highly attractive for clinical translation. We report here on a coassembly system of peptide amphiphile (PA) molecules designed to form nanofibers for cartilage regeneration by displaying a high density of binding epitopes to transforming growth factor beta-1 (TGFbeta-1). Growth factor release studies showed that passive release of TGFbeta-1 was slower from PA gels containing the growth factor binding sites. In vitro experiments indicate these materials support the survival and promote the chondrogenic differentiation of human mesenchymal stem cells. We also show that these materials can promote regeneration of articular cartilage in a full thickness chondral defect treated with microfracture in a rabbit model with or even without the addition of exogenous growth factor. These results demonstrate the potential of a completely synthetic bioactive biomaterial as a therapy to promote cartilage regeneration.
生物活性生物材料的分子和超分子设计可能对再生医学产生重大影响。理想的再生疗法应该是微创的,因此,设计用于将可注射液体在组织中自组装转化为固体生物活性结构的自组装生物材料的概念对于临床转化极具吸引力。我们在此报告一种肽两亲分子(PA)的共组装系统,该系统旨在通过显示与转化生长因子β-1(TGFβ-1)结合的高密度结合表位来形成用于软骨再生的纳米纤维。生长因子释放研究表明,含有生长因子结合位点的 PA 凝胶中 TGFβ-1 的被动释放较慢。体外实验表明,这些材料支持人骨髓间充质干细胞的存活并促进其软骨分化。我们还表明,这些材料即使在外源性生长因子存在或不存在的情况下,也可以促进微骨折处理的全层软骨缺损中关节软骨的再生。这些结果表明,完全合成的生物活性生物材料作为促进软骨再生的疗法具有潜力。