机器学习算法和强迫振荡测量在慢性阻塞性肺疾病自动识别中的应用。

Machine learning algorithms and forced oscillation measurements applied to the automatic identification of chronic obstructive pulmonary disease.

机构信息

Department of Electronics and Telecommunications Engineering, State University of Rio de Janeiro, Rio de Janeiro, Brazil.

出版信息

Comput Methods Programs Biomed. 2012 Mar;105(3):183-93. doi: 10.1016/j.cmpb.2011.09.009. Epub 2011 Oct 21.

Abstract

The purpose of this study is to develop a clinical decision support system based on machine learning (ML) algorithms to help the diagnostic of chronic obstructive pulmonary disease (COPD) using forced oscillation (FO) measurements. To this end, the performances of classification algorithms based on Linear Bayes Normal Classifier, K nearest neighbor (KNN), decision trees, artificial neural networks (ANN) and support vector machines (SVM) were compared in order to the search for the best classifier. Four feature selection methods were also used in order to identify a reduced set of the most relevant parameters. The available dataset consists of 7 possible input features (FO parameters) of 150 measurements made in 50 volunteers (COPD, n = 25; healthy, n = 25). The performance of the classifiers and reduced data sets were evaluated by the determination of sensitivity (Se), specificity (Sp) and area under the ROC curve (AUC). Among the studied classifiers, KNN, SVM and ANN classifiers were the most adequate, reaching values that allow a very accurate clinical diagnosis (Se > 87%, Sp > 94%, and AUC > 0.95). The use of the analysis of correlation as a ranking index of the FOT parameters, allowed us to simplify the analysis of the FOT parameters, while still maintaining a high degree of accuracy. In conclusion, the results of this study indicate that the proposed classifiers may contribute to easy the diagnostic of COPD by using forced oscillation measurements.

摘要

本研究旨在开发一种基于机器学习(ML)算法的临床决策支持系统,以帮助使用强迫振荡(FO)测量诊断慢性阻塞性肺疾病(COPD)。为此,比较了基于线性贝叶斯正态分类器、K 最近邻(KNN)、决策树、人工神经网络(ANN)和支持向量机(SVM)的分类算法的性能,以寻找最佳分类器。还使用了四种特征选择方法来确定最相关参数的减少集合。可用数据集由 50 名志愿者(COPD,n = 25;健康,n = 25)的 150 次测量中的 7 个可能的输入特征(FO 参数)组成。通过确定灵敏度(Se)、特异性(Sp)和 ROC 曲线下面积(AUC),评估了分类器和简化数据集的性能。在所研究的分类器中,KNN、SVM 和 ANN 分类器是最合适的,达到了允许非常准确临床诊断的值(Se > 87%,Sp > 94%,AUC > 0.95)。使用相关性分析作为 FO 测量参数的排序指标,允许我们简化 FO 测量参数的分析,同时仍然保持高度的准确性。总之,本研究的结果表明,所提出的分类器可以通过使用强迫振荡测量来帮助诊断 COPD。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索